
Parallel Graph Transformation Applied to
AGG Tool

Asmaa Aouat
Department of computer engineering

University of Science and Technology- Mohamed Boudiaf
Oran, Algeria

asmaaoran@hotmail.fr

El Abbassia Deba
Department of computer engineering

University of Oran
Oran, Algeria

abdeba@gmail.com

Abstract— Graph transformation is one of the key concepts in graph grammar. In order to accelerate the graph
transformation, the concept of parallel graph transformation has been proposed by different tools such as AGG
tool. The theory of parallel graph transformation used by AGG just allows clarifying the concepts of conflict
and dependency between the transformation rules. This work proposes an approach of parallel graph
transformations which enables dependent transformation rules to be executed in parallel.

Keywords-component; Graph transformation; Critical pair; Synchronization; AGG.

I. INTRODUCTION (HEADING 1)

 In the late '60s, graph transformation was motivated by considerations about pattern recognition, compiler
construction, and data type specification. Since then the list of areas which have interacted with the development
of graph transformation has grown impressively. Besides the areas mentioned, it includes the software
specification and software development, database design, model transformation, computer animation, biology
development, music composition, visual languages, and many others [1].

 The wide applicability of graph transformation is due to the fact that graphs are a natural way of describing
complex situations on an intuitive level. Basically, three approaches can be distinguished in the graph
transformation, which are Node Replacement Graph Grammars, Hyperedge Replacement Graph Grammars and
the algebraic approach. Generally, the first two approaches are used in the fields of biology and chemistry in
contrast to the algebraic approach that is widely used in the Model Driven Engineering (MDE) [2, 3].

 When graph transformation is used to describe concurrent complex systems where graph productions are
independent, the used techniques of graph transformation are not always sufficient. There exist different
techniques to accelerate the complex graph transformation, such as parallel graph transformation [4]. Therefore
our paper, propose an efficient technique of parallel graph transformation under AGG tool, which supports the
“cases of dependence and independence between the transformation rules” for avoiding the blocking created by
AGG in the case of conflict between the dependent rules.

 The paper is organized as follows: After the introduction, section 2 reviews the basic concepts for graph
transformation. The third section describes the parallelism in the AGG tool through a case study to showing its
limits. In the fourth section, we propose like generalized solution the approach of synchronized graph
transformation. The fifth section discusses related work. In the end, a conclusion finishes this paper and presents
future directions.

II. GRAPH TRANSFORMATION:GENERAL CONCEPTS

 As we have already mentioned, there are different approaches of graph transformation, but we retain the
algebraic approach in this work, because it is interesting from the theoretical view point and is considered as a
formal transformation approach based on attributed graph grammars where validation of the transformation is
verified.

Asmaa Aouat et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 1

 In analogy with Chomsky grammars, graph grammars are used to describe graph transformations or to
generate valid sets of graphic productions. A graph grammar of the algebraic approach is made of an initial
graph and a set of transformation rules. Every transformation rule incorporates a left hand side rule (LHS) and a
right hand side rule (RHS). When a match is found between the LHS of a rule and a part of the initial graph, the
subgraph is replaced by the corresponding part of the RHS rule. The rules may also have a condition that must
be satisfied in order to apply the rule. The application of a rule is called a derivation that allows the passage
from a graph to another. Figure 1 illustrates the principle of graph transformation [1].

III. PARALLEL TRANSFORMATION BY AGG

 In this section, we study under what conditions two graph transformation rules can be applied in parallel. This
leads to the concepts of parallel and sequential independence of graph transformation rules. The definition of
these conditions is presented in the Local Church-Rosser theorem. Before discussing Local Church-Rosser
theorem, we must firstly define parallel and sequential independence of two graph transformation rules [3].

Figure 1. Basic concepts of graph transformation

A. Conflict and dependance between transformation rules

Parallel independence Two graph transformation rules G ⇒H1 and G ⇒H2 are parallel independent if there
exist two morphisms i : L1 →D2 and j : L2 →D1 such that f2◦ i = m1 and f1◦ j = m2.

Sequential independence Two graph transformation rules G ⇒H⇒G’ are sequentially independent if there
exist two morphisms i : R1 →D2 and j: L2 →D1 such that ݂2◦ i = n1 and g1◦ j = m 2.

Intuitively, two independent graph transformations are parallel if their correspondence (match) does not overlap
on the elements that are preserved by the second transformation. An intuitive case that can be given, if neither of
the two transformations doesn’t remove an item preserved by another transformation.

Local Church-Rosser theorem

Given two parallel independent graph transformations G ⇒H1 and G ⇒H2, there exist a graph G’ and two graph
transformations H1⇒	G’ and H2⇒	G’ such that G ⇒H1⇒G’ and G⇒H2⇒G’ are sequentially independent.

Asmaa Aouat et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 2

Given two sequentially independent graph transformations G ⇒H1 ⇒G’, there exist a graph H2 and a graph
transformations G ⇒H2 ⇒G’ such that G ⇒H1 and G ⇒H2 are parallel independent [3].

Example of dependence between two transformation rules

Figure 2 shows an example of two transformation rules P1 and P2 that are both parallel and sequentially
independent. So the left rule P1 and the right rule P2 satisfy the condition for they can be applied on the same
graph.

Figure 2. Independence between transformation rules

B. Case study

In order to explain different aspects of parallel graph transformation in the case of dependence between
transformation rules and to illustrate our approach, we introduce a simple example of a business center. Its
graphical diagram is shown in Figure 3 like an instance of class diagram.
The Shop offers a Cart of shopping for Clients to transport the Wares. The Clients carry a certain amount of
cash; will be cashed at the Cash desk.
Bill lists the wares collected by the Client together with the overall amount of the prizes. Since we are about to
use a class diagram, specifying only class, associations, attributes, and constraints [5]. An instance of this class
diagram represents our graph.

Asmaa Aouat et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 3

Figure 3. Instance of class diagram for the business center

For shopping in the Shop, the Clients take a Cart; make the choice of Wares by selecting to Rack of Shop and
placing them in the Cart. Once the selection of Wares is completed, the Clients proceed toward the Cash desk.
There, he finds a clerk is waiting to sell the Wares. The Client withdraws the Wares progressively from the Cart
and present then to clerk which establishes Bill for the list of Wares. The total of the Bill is increased by the
Wares prizes, added. The ownership of the Wares is transferred from the Shop to the Client, as described by the
Depend links from the Shop. These facts are illustrated in Figure 4 in the form of a set of transformation rules.

Figure 4. Set of transformation rules for business center

An example of a conflict between two transformation rules of pay bill and settle bill is given in Figure 5. The
two transformation rules share and delete Depend link between Ware and Shop. Thus, they overlap in items that
are deleted. As a consequence, each of the two disables the other one, i.e., there is dependence between these
two rules, and then they cannot be parallelized, unlike the independence between P1 and P2 shown in Figure 2.

Figure 5. The conflict between pay bill and settle bill

AGG (Attributed Graph Grammar) is a tool well appropriate for graph transformation systems supporting the
algebraic approach. It was developed and expanded over the past 15 years, and implements the algebraic

Asmaa Aouat et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 4

approach of “Single Pushout Approach” SPO like transformation behavior. Currently, AGG supports the
computation of critical pairs for attributed graphs. All transformation rules that overlap or trigger a conflict i.e.;
which are dependent between them, are detected by AGG via the critical pairs. The critical pair analysis is
offered through a graphical user interface to browse through the computed pairs [6]. Figure 6 shows a screen
dump of all critical pairs that are analyzed by AGG for the two transformation rules pay bill and settle bill where
the essence of this critical pairs is the Depend link between the Shop and the Ware.

 Critical pairs seem a good way to analyze and detect conflicts between transformation rules but in reality they
represent an obstacle for independent transformation rules because they interrupt the graph transformation. As a
conclusion, AGG doesn’t allow parallel execution of dependent transformation rules. Hence our interest appears
at this level to resolve this issue in the next section.

Figure 6. Critical pair

IV. SYNCHRONIZED GRAPH TRANSFORMATION

The objective of our approach is to propose a solution for blocking provided by critical pairs in the case of
conflict in AGG tool. Our approach uses graph transformation that is both synchronous and asynchronous and
meets the needs of parallel applications under AGG tool. Synchronous and asynchronous actions are usually
distinguished according to their interaction type. Synchronized actions are executed when the transformation
rules are dependent between then while asynchronous actions also enable transformation to independent
transformation rules [7].
 In reality, the rules are not independent of each other can still be applied in a parallel way, if they can be
synchronized by sub- rule. If two actions include the deletion or creation of the same node or same edge, this
operation can be encapsulated in a separate action that is a common sub-rule of the originals rules. A common
sub-rule is modeled by applying the core rule of all additional actions (modeled by multi-rules).In execution; the
multi-rules are relatively synchronized by core rule where a copy of core rule is embedded in each multi-rule.
Consequently, the core rule runs only once. The embedding of multi-rules corresponds to the merged graph
transformation [4].

Note there are may be an arbitrary number of multi- rules incorporating in the same core rule. Formally, the
possibility of synchronization and integration of core rule in their multi- rules are defined by an interaction
scheme. Note the formal structure of merged rules is described with the DPO approach (used by AGG) [3].

Interaction Scheme An interaction scheme IS= (rk, M) consists of rule rk called core rule and a set M= { ri /1 ≤ i
≤ n} of rules called multi-rules with rk ⊆ ri for all 1 ≤ i ≤n. All rules are typed over the same type graph.

Now, the above described example is executed with the merged graph transformation where the two
transformation rules R1 (pay bill) and R2 (settle bill) have a common action “Ware Depend to Shop” is modeled
by core rule. The first rule of Figure 7 shows the core rule followed by two multi-rules, that both incorporate the
core rule and the actions that do not overlap. In the end, Figure 10 illustrates the merged rule. Therefore, the
integration of parallel graph transformation based on merged rule into AGG can resolve the blocking problem.

Figure 7. Critical pair

Asmaa Aouat et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 5

Figure 8. Multi rule1

Figure 9. Multi rule2

Figure 10. Merged rule

V. RELATED WORK

There are two transformation tools using parallel graph transformation: ATOM3 [8] and GROOVE [9]. AToM3
supports explicit definition of interaction types in different rule editors and GROOVE uses merge rule based on
nested graph predicates.

Furthermore, graph transformation tool FuJaBA [10] uses so-called sets of nodes that are duplicated as often as
necessary, but are not based on the transformation of merged graph.

A conceptual approach related to our approach, is parallel graph transformation for distributed graph states that
has been studied in the framework of the algebraic theory of graph grammars [4]. Distributed graph
transformation seems well adapted for asynchronous actions that operate completely independently.

VI. CONCLUSION

In this paper, we discussed parallel graph transformations where the concept of merging is very useful for this
application domain because it permits to dependent transformation rules to be executed in parallel way.
 The parallel actions that must be performed on a structure set of similar objects can be described by interaction
types. A merged graph transformation applies an interaction type, i.e. a set of synchronized parallel actions
relatively to the core rule. Although merged graph transformations are useful for specifying graph
transformations more naturally and more efficiently, the theory is not fully developed. This work can be seen as
an essential contribution to the merged graph transformation on AGG because practice results have shown that
integrating merge approach in the AGG tool is efficient and runs smoothly without blocking in the case of
independence between transformation rules.
 Generalizing merged approach on the AGG tool in order to execute any parallel graph transformations, is
feasible because AGG is “open source”.

REFERENCES

[1] G. Rozsnberg, “Handbook of graph grammars and computing by graph transformation”, Vol 1. Foundations, Netherlands , 1996

[2] J. Bézivin, “Sur les principes de base de l’ingénierie des modèles”, RTSI- L’Objet, 2004, pp. 145-157.
[3] H.Ehrig, K.Ehrig et U.Prange,”Fundamentals of Algebrique Graph Transformation”, Monographs in Theoretical Computer Science.

An EATCS Series, Springer, 2006.
[4] G .Taentzer,” Parallel and Distributed Graph Transformation: Formal Description and Application to Communication-Based Systems”,

PhD thesis, TU Berlin 1996.
[5] D. D’Souza and A. Wills. Components and Frameworks with UML: The Catalysis Approach. Addison-Wesley, 1998.
[6] AGG Homepage, http://user.cs.tu-berlin.de/~gragra/agg/
[7] G,Taentzet,Towards Synchrnous and Asynchronous Graph Transformations, Fundamenta Informaticae, 1996.
[8] ATOM3 Homepage, http://atom3.cs.mcgill.ca/
[9] GROOVE Homepage, http://groove.cs.utwente.nl/
[10] FuJaBA Homepage, http://www2.cs.uni-paderborn.de/cs/agschaefer/Lehre/PG/FUJABA/

Asmaa Aouat et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 6

