
MPEG-1/2 audio layer-3(MP3) ON THE
RISC based ARM PROCESSOR

(ARM92SAM9263)
E.KALPANA1 V.SRIDHAR 2 M.RAJENDRA PRASAD2

1 Assistant Professor, ECE, Vidya Jyothi Institute of Technology, Hyderabad
2 Assistant Professor, ECE, Vidya Jyothi Institute of Technology, Hyderabad
3 Associate Professor, ECE, Vidya Jyothi Institute of Technology, Hyderabad

1kalpanaerla@yahoo.co.in , 2varadalasri@gmail.com, 3rajendraresearch@gmail.com

ABSTRACT: MPEG-1/2 audio layer-3(MP3) is a most popular format for playback 0f high quality compressed
audio for portable devices such as audio players and mobile phones. Typically these devices are based on DSP
architecture or RISC processor. While the DSP architecture is more efficient for implementing the MP3
algorithm, the challenges of RISC implementation are less understood. This project describes the challenges and
optimization techniques useful for implementing the MP3 decoder algorithm on the RISC based ARM7DMI
processor. Some of these techniques are generic and hence applicable to any audio code implementation on
RISC-based platforms. This project gives results which are among the best in the industry, indicate that stereo
MP3 at 44.1KHZ and 128KBPS can be decoded using 30-40MIPS on the ARM7TDMI. The target machine
runs on ARM92SAM9263. The music data can be compressed into 1/10 size while maintaining CD quality,
when the layer-3(MP3) algorithm is applied to the system. In addition the output of this decoder is fully bit
complement with the standard on the ISO test vectors.

Keywords: MPEG-1/2 audio layer-3, ARM7DMI, MIPS, CD, MP3,DSP
 ARCHITECHTURE,RISC,ARM92SAM9263

I . INTRODUCTION
 MP3 has changed the way people listen to music on the Internet. Internet users, music lovers who
would like to download highly compressed dig ital files at near CD quality are the most benified.
Uncompressed digital CD-quality audio signals consume a large amount of data(CD quality audio consumes
10MB of memory space to store 1 minute of song) and are therefore not suited for storage and transmission. The
need to reduce this amount without any noticeable quality loss was stated in the late 80’s by the International
Organization for Standardization (ISO). A working group within the ISO referred to as the Moving Pictures
Experts Group (MPEG), developed a standard that contained several techniques for both audio and video
compression. The audio part of the standard included three modes with increasing complexity and performance.
The third mode, called Layer III, manages to compress CD music from 1.4 Mbit/s to 128 kbit/s with almost no
audible degradation. This technique, also known as MP3, has become very popular and is widely used in
applications today. The ability to maintain impressive sound quality whilst reducing the data requirements by a
factor of 1:10 or more, has led to an explosion of content on the Internet.

Traditionally, a DSP processor may have been specified as an implementation platform for MP3. Most

of the devices are battery operated devices the key requirement of these devices are power consumption should
be low. However the analysis of the key technical requirements for MP3 shows that a programmable software
solution mapped to a RISC based ARM processor and important difficulty that is faced in such cases is that of
optimizing DSP intensive algorithms on a general purpose RISC processor that is not explicitly designed for
DSP applications.

MP3 decoding is a computationally expensive process, requiring extensive optimizations to be able to
run on portable devices. The most critical parts of the decoding process are the Inverse Modified Discrete
Cosine Transform (IMDCT) and the Synthesis Polyphone FilterBank. These two are time consumed processes
are optimized by handwritten Assembly code and this master thesis describes the implementation of a system
for MP3 audio playback in real-time on an ARM7 based system.

 The purpose of this paper is to implement an MP3 decoder that runs on ARM7TDMI based machine.
The target machine (AT91SAM9263) runs on an ARM7TDMI processor.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 79

2. 1.THE ANATOMY OF THE MP3 FILE:
 All MP3 files are divided into smaller fragments called frames. Each frames stores1152audio samples
and lasts for 26 ms. This means that the frame rate will be around 38 fps. In addition a frame is subdivided into
two granules each containing 576 samples. Since the bitrate determines the size of each sample, increasing the
bitrate will also increase the size of the frame. The size is also depending on the sampling frequency according
to following formula

Frame length = [144 * (bit rate / sampling frequency)] bytes

Padding refers to a special bit allocated in the beginning of the frame. It is used in some frames to exactly satisfy
the bitrate requirements. If the padding bit is set the frame is padded with 1 byte. Note that the frame size is an
integer

Ex: 144*128000/44100 = 417 bytes

2.1.1. The Frame Layout:
A frame consists of five parts; header, CRC, side information, main data and ancillary data, as shown in figure
below

Figure 2.1: The frame layout

1. Frame header:
The header is 32 bits long and contains a synchronization word together with a description of the frame. The
synchronization word found in the beginning of each frame enables MP3 receivers to lock onto the signal at any
point in the stream. This makes it possible to broadcast any MP3 file. A receiver tuning in at any point of the
broadcast just have to search for the synchronization word and then start playing. A problem here is that
spurious synchronization words might appear in other parts of the frame. A decoder should instead check for
valid sync words in two consecutive frames, or check for valid data in the side information, which could be
more difficult.
Figure 2.1 shows an illustration of the header

Figure 2.2: The MP3 frame header

Sync (12 bits):
This is the synchronization word described above. All 12 bits must be set, i.e. ‘111111111111’.

Id (1 bit):
Specifies the MPEG version. A set bit means that the frame is encoded with the MPEG-1 Standard, if not
MPEG-2 is used.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 80

Some add-on standards only use 11 bits for the sync word in order to dedicate 2 bits for the id.

Table 2.1: Bit values when using two id bits

Table 2.2: Definition of layer bits

Protection Bit (1 bit)
If the protection bit is set, the CRC field will be used.
Bitrate(4 bits):
These four bits tells the decoder in what bit rate the frame is encoded. This value will be the same for all frames
if the stream is encoded using CBR.
Table 2.3 shows the defined bit values.

Table 2.3: Bitrate definitions

Frequency (2 bits):
2 bits that give the sampling frequency, see Table 2.4.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 81

Table 2.4: Definition of accepted sampling frequencies

Padding bit (1 bit):
An encoded stream with bitrate 128 kbit/s and sampling frequency of 44100 Hz
will create frames of size 417 bytes.
To exactly fit the bitrate some of these frames will have to be 418 bytes. These frames
set the padding bit.
Private bit (1 bit):
One bit for application-specific triggers.
Mode (2 bits)
Specifies what channel mode is used according to Table 2.5.

Table 2.5: Channel Modes and respective bit values

Mode Extension (2 bits):
These 2 bits are only usable in joint stereo mode and they specify which methods to use. The joint stereo mode
can be changed from one frame to another, or even switched on or off. To interpret the mode extension bits the
encoder needs the information in Table 2.6.

Table 2.6: Definition of mode extension bits

Copyright Bit (1 bit):
If this bit is set it means that it is illegal to copy the contents.
Home (Original Bit) (1 bit)
The original bit indicates, if it is set, that the frame is located on its original media.

Emphasis (2 bits):
The emphasis indication is used to tell the decoder that the file must be de-emphasized i.e. The decoder must
're-equalize' the sound after a Dolby- like noise suppression. It is rarely used.

Table 2.7: Noise suppression model

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 82

2. CRC (0 bytes, 16 bytes):
This field will only exist if the protection bit in the header is set and makes it possible check the most sensitive
data for transmission errors. Sensitive data is defined by the standard to be bit 16 to 31 in both the header and
the side information. If these values are incorrect they will corrupt the whole frame whereas an error in the main
data only distorts a part of the frame. A corrupted frame can either be muted or replaced by the previous frame.

3. Side information:
The side information part of the frame consists of information needed to decode the main data. The size depends
on the encoded channel mode. If it is a single channel bitstream the size will be 17 bytes, if not, 32 bytes are
allocated. The different parts of the side information are presented in Table 2.8 and described in detail below.
The length of each field will be specified in parenthesis together with the fieldname above the actual
description. If one length value is written the field size is constant. If two values are specified the first value will
be used in mono mode and the second will be used for all other modes, thus these fields are of variable length.
All tables below will assume a mono mode. The tables will change depending on mode since separate values are
needed for each channel

Table 2.8: Side information

main_data_begin (9 bits):
Using the layer III format there is a technique called the bit reservoir which enables the left over free space in
the main data area of a frame to be used by consecutive frames. To be able to find where the main data of a
certain frame begins the decoder has to read the main_data_begin value. The value is as a negative offset from
the first byte of the synchronization word. Since it is 9 bits long it can point (2^9 – 1) * 8 = 4088 bits. This
means that data for one frame can be found several previous frames. Note that static parts of a frame like the
header, which is always 32 bytes, are not included in the offset. If main_data_begin =0 the main data starts
directly after the side information.

Figure 2.3: Use of the bit reservoir

private bits (5 bits, 3 bits):
Bits for private use, these will not be used in the future by ISO.
scfsi (4 bits, 8 bits):
The Scale Factor Selection Information determines whether the same scale factors are transferred for both
granules or not. Here the scale factor bands are divided into 4 groups According to Table 2.9.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 83

Table 2.9: Scale factor groups

4 bits per channel are transmitted, one for each scalefactor band. If a bit belonging to aScalefactor band is zero
the scalefactors for that particular band are transmitted for each
granule. A set bit indicates that the scalefactors for granule0 are also valid for granule1e1.This means that the
scalefactors only need to be transmitted in granule0, the gained bits can be used for the Huffman coding.If short
windows are used (block_type = 10) in any granule/channel, the scalefactors arealways sent for each granule for
that channel.
Side info for each granule:
The last two parts of a frame have the same anatomy and consists of several subparts as
shown in . These two parts store particular information for each granule respectively

Table 2.10: Fields for side information for each granule

par2_3_length (12 bits, 24 bits):
States the number of bits allocated in the main data part of the frame for scale factors (part2) and Huffman
encoded data (part3). 12 bits will be used in a single channel mode whereas in stereo modes the double is
needed. This field can be used to calculate the location of the next granule and the ancillary information (if
used).
big values (9 bits, 18 bits):
The 576 frequency lines of each granule are not coded with the same Huffman code table.
These frequencies range from zero to the Nyquist frequency and are divided into five regions (see Figure 3.4).
The purpose of this partitioning is to allow different Huffman tables to different parts of the spectrum in order to
enhance the performance of the Huffman encoder.

Figure 2.4: Regions of the frequency spectrum

 Partitioning is done according to the maximum quantized values. This is done with the assumption that
values at higher frequencies are expected to have lower amplitudes or does not need to be coded at all.
 The zero regions represent the highest frequencies and contain pairs of quantized values equal to zero. In the
count1 region quadruples of quantized values equal to -1, 0 or 1 reside. Finally, the big values region contains
pairs of values in representing the region of the spectrum which extends down to zero. The maximum absolute
value in this range is constrained to 8191. The big values field indicates the size of the big values partition hence
the maximum value is 288.
global gain (8 bits, 16 bits):
Specifies the quantization step size, this is needed in the requantization block of
the decoder.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 84

scalefac_compress (4 bits, 8 bits):
Determines the number of bits used for the transmission of scale factors. A granule can be divided into 12 or 21
scale factor bands. If long windows are used (block_type = {0,1,3}) the granule will be partitioned into 21 scale
factor bands. Using short windows (block_type = 2) will partition the granule into 12 scale factor bands. The
scale factors are then further divided into two groups, 0-10, 11-20 for long windows and 0-6, 7-11 for short
windows.
The scalefac_compress variable is an index to a defined table (see Table 5.11). slen1 and slen2 gives the number
of bits assigned to the first and second group of scalefactor bands respectively.

Table 2.11: scalefac_compress table

windows_switching_flag (1 bit, 2 bits):
Indicates that another window than the normal is used block type,mixed_block_flag and subblo16 Also when
windows_switching_flag is set all remaining values not being in region0 are contained in region1 thus region2 is
not used.
block type (2 bits, 4 bits):
This field is only used when windows_switching_flag is set and indicates the type of window used for the
particular granule (see Table 5.12, all values but 3 are long windows). The value 00 is forbidden since block
type is only used when other than normal windows are used.

Table 2.12: block type definition

mixed_blockflag (1 bit, 2 bits):
This field is only used when windows_switching_flag is set.
 The mixed_block_flag indicates that different types of windows are used in the lower and higher frequencies.
If mixed_block_flag is set the two lowest sub bands (see 6.1) are transformed using a normal window and the
remaining 30 sub bands are transformed using the window specified by the block type variable.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 85

table select ((10 bits, 20 bits) or (15 bits, 30 bits):
There are 32 possible Huffman code tables available in the standard. The value of this field gives the Huffman
table to use when decoding and its size is 5 bits, i.e. 32 different values, for each region, granule and channel.
The table select only specifies the tables to use when decoding the big values partition. The table specified is
dependent on the local statistics of the signal and by the maximum quantization allowed to quantize the 576
frequency lines in the granule. As stated above, when the windows_switching_flag is set region2 is empty so
only two regions are coded. This implies that in mono mode 5*2*1 = 10 bits are needed and in stereo
mode5*2*2 = 20 bits are needed if windows_switching_flag = 1. Using all regions (windows_switching_flag =
0) the bits needed will be 5*3*1 = 15 and 5*3*2 = 30 respectively.
subblock_gain (9 bits, 18 bits):
This field is only used when windows_switching_flag is set and when block type = 10, although it is transmitted
independently of block type. This 3 bit variable indicates the gain offset from global gain for each short block.
region0_count (4 bits, 8 bits), region1_count (3 bits, 6 bits):
region0_count and region1_count contains one less than the number of scale factor bands in region0 and region1
respectively. The region boundaries are adjusted to the partitioning of the frequency spectrum into scale factor
bands. If short windows are used the number of each windows is counted.
Preflag (1 bit, 2bits):
This is a shortcut for additional high frequency amplification of the quantized values. If preflag is set, the values
of a defined table are added to the scale factors. If block type = 10, i.e. short blocks, preflag is never used.
scalfac_scale (1 bit, 2bits):
The scale factors are logarithmically quantized with a step size of 2 or v2 according to Table 2.13.

Table 2.13: Quantization step size applied to scale factors

count1table_select (1 bit, 2bits):
Two possible Huffman code tables are available for the count1 region. This field specifies which table to apply.

4. Main Data:
The main data part of the frame consists of scale factors, Huffman coded bits and ancillary data.

 Scale factors

Scalefactors for 44.1 kHz, long windows (576 frequency lines)

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 86

Table 2.14 scalefactor bands

The purpose of scale factors is to reduce the quantization noise. If the samples in a particular scale factor band
are scaled the right way the quantization noise will be completely masked. One scale factor for each scale factor
band is transmitted. The scfsi field determines if the scale factors are shared between the granules or not. The
actual bits allocated for each scale factor depends on the scalefac_compress field.
The subdivision of the spectrum into scale factor bands is fixed for every window length and sampling
frequency and stored in tables in the coder and decoder (a table of scale factor bands used for long windows
with a sampling frequency of 44.1 kHz is presented in(table no 2.15).

 Huffman code bits
This part of the frame contains the Huffman code bits. Information on how to decode these is found in the side
information. For the three sub regions in the big values region always pairs are encoded. For instance, the
Huffman table no. 7 (table3.14)may be applied to big values. X and y are the pair of values to be coded, hen
specifies the length of the Huffman code for x and y and hcode is the actual Huffman code representing x and y.
In the case of count1 values they are encoded in quadruple les, v,w,x,y. Only tables A and B support coding in
this region. The zero region is not Huffman coded but run length coded since all values are zero.
Depending on whether long or short blocks are used, the order of the Huffman data differs. If long blocks are
used, the Huffman encoded data is ordered in terms of increasing frequency.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 87

Huffman code table 7

Table2.15 huffmantable no.7

5. Ancillary Data:
The ancillary data can hold user-defined information. The decoder does not process the information, more likely
it is sent to the application using the decoder. The ancillary data can hold the song title or optional song
information. The drawback is that the ancillary data is placed in the frame by the encoding process and can not
easily changed at run-time. If it is being streamed over the network, live broadcasting information cannot be
included in the ancillary data. Today, Internet radio stations often sends broadcasting information with a
continuous, predefined interval. Streaming MP3 decoders must be able to handle this case correctly.
2.2. OVERVIEW OF THE MP3 ENCODER:
The encoding process is very complex and not fully described here:

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 88

Figure 2.5. MPEG-1 Layer III encoding scheme

The input to the encoder is PCM audio signal(CD quality audio at bitrate of 1.4Mbits/s).The output from the
encoder is a MP3 bitstream further this is given to the decoder to get the original PCM output.

The PCM input is given to the analysis filter bank. The output from this is given to psychoacoustic and

MDCT. MDCT is used for the conversion of time domain to frequency domain. The masking thresholds are
used to iteratively determine how many bits are needed in each critical band to code the samples so that the
quantization noise is not audible. This process is done in quantization block. The quantized samples are
Huffman coded and stored in the bit stream along with the scale factors and side information. The output from
the encoder is a MP3 further this is given to the decoder to get the original PCM output.

2.2.1. Analysis Polyphase Filter bank:

A sequence of 1152 PCM samples are filtered into 32 equally spaced frequency sub bands depending
of the Nyquist frequency of the PCM signal. If the sample frequency of the PCM signal is 44.1 kHz the Nyquist
frequency will be 22.05 kHz. Each sub band will be approximately 22050/32 = 689 Hz wide. The lowest sub
band will have a range from 0-689 Hz, the next sub band 689 – 1378 Hz, etc. Every sample (might) contain
signal components from 0 – 22.05 kHz that will be filtered into appropriate sub band.
2.2.2. FFT:

Simultaneously as the signal is processed by the polyphase filter bank it is also transformed to the
frequency domain by a Fast Fourier Transform. Both a 1024 and a 256 point FFT are performed on 1152 PCM
samples at the time to give higher frequency resolution and information on the spectral changes over time.

2.2.3. Psychoacoustic Model:

This block retrieves the input data from the FFT output. Since the samples are in the frequency domain
they can be applied to a set of algorithms. These algorithms will model the human sound perception and hence

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 89

they can provide information about which parts of the audio signals that is audible and which parts are not. This
information is useful to decide which window types the MDCT should apply and also to provide the
Nonuniform Quantization block with information on how to quantize the frequency lines.(frequently appearing
bit patterns by short bit patterns and infrequently appearing bit patterns by longer bit patterns.)

To know which window type to send to the MDCT block the two presently FFT spectra and the two
previous spectra are compared. If certain differences are found a change to short windows requested. As soon as
the differences fades away the MDCT block will be informed to change back to long (normal) windows (see
Figure 2.6).

Figure 2.6: Window switching decision

The Psychoacoustic Model also analyzes the FFT spectrum to detect dominant tonal

components and for each critical band masking thresholds are calculated. Frequency
components below this threshold are masked out. Recall that the scalefactor bands are roughly equivalent to the
critical bands of human hearing. The thresholds limits for each scalefactor band are used by the quantization
block to keep the quantization noise below these limits.

Figure 2.7 Masking threshold of each subband

2.2.4. Modified Discrete Cosine Transform (MDCT):
By applying a modified discrete cosine transform to each time frame of sub band samples the 32 sub bands will
be split into 18 finer sub bands creating a granule with a total of 576 frequency lines. But prior to the MDCT
each sub band signal has to be windowed.
Windowing is done to reduce artifacts caused by the edges of the time- limited signal segment. For steady state
signals long window is used and for transient signals short windows are used. The aliasing introduced by the
polyphase filter bank is now removed to reduce the amount of information that needs to be transmitted. This is
achieved using a series of butterfly computations that add weighted, mirrored versions of adjacent sub bands to
each other

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 90

2.2.5. Nonuniform Quantization :
Nonuniform Quantization block with information on how to qua ntize the frequency lines.(frequently appearing
bit patterns by short bit patterns and infrequently appearing bit patterns by longer bit patterns.) The frequency
lines are quantized using power law computation.
2.2.6. Huffman Encoding:
The quantized values are Huffman coded. Each division of the frequency spectrum can be coded using different
tables. The Huffman coding is one of the major reasons why the MPEG-1 Layer III retains a high quality at low
bit rate.
2.2.7. Coding of Side Information:
All parameters generated by the encoder are collected to enable the decoder to reproduce the audio signal. These
are the parameters that reside in the side information part of the frame.
2.2.8. Bitstream Formatting CRC word generation
In this final block the defined bitstream is generated The frame header, side information, CRC, Huffman coded
frequency lines etc are put together to form frames.

3. MP3 DECODING:
3.1. THE MP3 DECODING PROCESS:
The decoding process creates output samples from an MP3 bitstream. MP3 is based on small packages, or
frames, each producing a few milliseconds of sound output. A frame contains information about how it should
be properly decoded, as well as compressed audio data.

Figure 3.1. The MP3 decoding process

The audio data is first Huffman decoded, producing symbols that represent 576 scaled frequency lines.

The next step in the process is to descale the symbols to normal frequency lines, using the scalefactors that are
provided in the frame. If the frame contains more than one channel of audio information, the stereo decoder
recreates the frequencies for the left and right channels. The last decoder steps produce time samples from the
frequency lines using complex calculations by running it through an Inverse Discrete Cosine Transform (IDCT)
and a synthesis polyphase filter bank. An overview of the decoding process can be found in Figure 3.1.
3.1.1. Frame synchronization:

Before any decoding can take place, the start of the frame must be found. A synchronization word containing a
bit pattern of 12 consecutive ones, ‘1111 1111 1111’, is placed at the beginning of each frame header. It is
possible that the same bit pattern exists in other parts of the frame as well, and the decoder cannot tell if it has
found a synchronization word or just some arbitrary data. If a CRC is present, it can be used to confirm that a
new valid header has been found. If the CRC is not present, the decoder can still make modest attempts to
confirm that it is a valid synchronization word by searching for invalid combinations of fields in the header. The
header contains enough information to calculate the size of the frame, which is also the start of the next frame,
using the bitrate and frequency fields. If a frame is corrupted, it is no longer possible to find the exact position of
the next frame. This is why the synchronization word is present in every frame.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 91

3.1.2. Huffman decoding:

Huffman encoding is a loss-less coding scheme that produces Huffman codes from input symbols. The mapping
of symbols to Huffman codes is based on the statistic contents of the input sequence. Symbols that occur more
frequently are coded with a short code, while symbols that occur less frequently are coded with longer codes. In
average, this will reduce redundancy, but is only possible if some combinations of input sequences are more
likely to appear than others.

The decoding procedure is based on several Huffman tables that are used for mapping Huffman codes
to symbols. The decoder compares the input sequence with the information in the Huffman table. If it finds a
match, the corresponding output symbol is fetched. There is one and only one symbol for every possible input
sequence.

In MP3, there are 32 different Huffman tables. The tables are predefined and based on statistics suitable
for compressing audio information. The side information specifies which table to use for decoding the current
frame.

The output from the Huffman decoder is 576 scaled frequency lines, represented with integer values.
The frequency lines are divided into three partitions: Big-values, count1 and rzero, as can be seen in Figure
3.2.Big-values contains the lowest frequency lines and are coded with the highest precision. The range of big-
values is �15. The next partition, count1, can only be coded with the values 0, 1 or -1. The last partition, rzero,
represents the highest frequencies and is not a part of the bitstream. Instead, rzero represents the frequency lines
that have been removed by the encoder, and it should be filled with zeros by the decoder. The boundaries of the
partitions are specified in the side information, and are selected by the psycho acoustic model during the
encoding process.

Figure 3.2 The frequency lines are divided into three partitions

When decoding big-values, the huffman table will produce two frequency lines for each input sequence

and the count1 partition will produce four frequency lines for each input sequence. It is possible to send larger
big-values than 15 if extra precision is needed. It is done with a so-called escape sequence, and is only available
for big-values. If the Huffman decoder finds the value 15, it assumes an escape sequence is present and reads
out a number of bits from the stream. The escape value is directly added to the original value 15. The number of
bits to read
for each escape sequence is specified by the Huffman table that is currently in use, and is called linbits. An
example of the 576 frequency lines from the Huffman decoder is shown in Figure 3.3 The horizontal lines
represent the maximum range from -15 to 15. All exceeding values are coded with escape sequences.

Figure 3.3 Frequency lines generated by the Huffman decoder

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 92

3.1.3. Descaling:

The symbols from the Huffman decoder can reconstruct the original frequency lines by using the scalefactors in
the side information. In the encoder process, the frequency lines were divided into a scalefactor and a small
integer number, normally in the range –15 to 15. The scalefactors were saved separately and the integer number
were Huffman encoded. Together, the scalefactors and the Huffman coded data forms the main data. An
overview of the descaling process can be found in Figure 3.4.

Figure 3.4 The descaling process

There is not one scalefactor for each frequency line. Instead the frequency lines are divided into 21
groups, called scalefactor bands, each using its own scalefactor. The number of frequency lines in each group
depends on the frequency band that it is representing. A low frequency scalefactor band contains fewer values
than a scalefactor band representing higher frequencies.

The descaling process uses global scaling information from the side information that should be applied
to all frequency groups, as well as the 21 scalefactors that should be applied to each group independently. The
complete descaling equations for short and long blocks respectively are presented below:

In the equations above, is represents the input values generated by the huffman decoder and xr

represent the output sequence from the descaling process. global_gain, subblock_gain, scalefac_multiplier and
preflag can all be found in the side information. Scalefac_s and scalefac_l are the scalefactors for long and short
blocks respectively, found in the main data. The pretab is a predefined table in the ISO/IEC 11172-3 standard.

3.1.4 . Reordering:

During the encoding process, the MDCT can arrange the output in two different ways.
Normally the output from the MDCT is sorted by subbands in increasing frequency. When a short block is
decoded, a short window will be used. Figure 3.5 shows short and long windows, applied on short and long
blocks respectively. The output will in this case be sorted on subbands, then on windows and then on increasing
frequency.

Figure 3.5 Short and long windows used by the MDCT and the IMDCT

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 93

Reordering is only applied on short blocks, sorting the frequency lines first by subbands and then by frequency.

Figure 3.6. Reordering of short block types into continuous frequency lines

Figure 3.6 shows the reordering of a short block into subbands with increasing frequency.
The shading in the subband represents the frequencies. A darker color corresponds to a higher frequency.

3.1.5. Stereo processing:

There are four different channel modes in MP3: Single channel, dual channel, MS stereo and Intensity stereo.
When using single channel and dual channel, no stereo processing is
required. Dual channel means that the two channels are coded independently.

3.1.6. MS stereo:

Middle/side stereo, or MS stereo for short, is a method to remove redundancy between
channels. This is achieved by coding the sum and difference of the signal instead of the left and right channels.

Mi is the sum of the two channels, and Si is the difference. Li and Ri are the output samples.

3.1.7. Intensity stereo:

Intensity stereo is a more complex method of stereo coding that is divided in a magnitude part and a stereo
position part. Intensity stereo only affects the coding of the higher frequency lines, and the lower frequency lines
can still be coded as left/right channel or in middle/side stereo. The calculation steps for producing the left and
right channel is:

The intensity stereo position, is_possb, is read from the scalefactor of the right channel.
Together these techniques of removing irrelevant difference between channels are called joint stereo coding.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 94

3.1.8. Alias reconstruction:

The encoder applies an alias reduction after the subband synthesis, because alias effects are always introduced
after a non-ideal bandpass filtering. The filter merges the frequency lines using eight butterfly calculations for
each subband.

Figure 3.7 Alias reduction diagram

The diagram of the alias reduction can be found in Figure 2.13. The adjacent subbands are weighted in all
frequency lines except the two centermost frequencies in every subband. The coefficient in the butterfly filter is
defined in the ISO/IEC 11172-3 standard.

3.1.9. Inverse modified DCT (IMDCT):

The Inverse Modified Discrete Cosine Transform (IMDCT) used in MP3 is an 18-point DCT that produces 36
output values from 18 input values. It does not produce more information than it is provided with, but it
disperses the result from the calculation on a larger number of values. This is why the term modified is being
used. The DCT is inverse because it produces time samples from frequency lines.
The transformation from the frequency domain to the time domain is done in conjunction with the synthesis
polyphase filter bank described in section 2.3.10. Instead of directly producing time samples, the IMDCT
generates polyphase filter subband samples from the input frequency lines.These will be later be used for
creating time samples.
The 36 calculated values from the IMDCT must be multiplied with a 36-point window before it can be used by
the next step in the decoding process. There are four different window types that can be applied to the output
samples. The window to use is based on the block type, and the block type can be found in the side information.
The reason for generating 36 output values is that the IMDCT uses a 50% overlap. The lower 18 values are
added with the higher 18 values from the previous frame, and used as output. The higher 18 values are then
stored and used the same way when the next frame is being decoded.

Figure 3.8. IMDCT with windowing and overlap add

A full view of IMDCT including windowing and overlap add can be found in Figure 3.7. The IMDCT
calculation is based on the following equation:

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 95

One of four different windows can be applied to the output from the IMDCT. Each input
value is scaled with the corresponding value in the window. The window type is based on the behavior of the
input sequence and can be a normal, short, start or stop window.

3.1.10. Frequency inversion:

Before proceeding to the synthesis polyphase filter bank, all odd subsamples in all odd
subbands must be negated. This is done to compensate for the frequency inversion in the
synthesis polyphase filter bank.
3.1.11. Synthesis polyphase filter bank:

The synthesis polyphase filter bank, or the subband synthesis, is the final step in the decoding process. It
produces 32 PCM samples at a time using the input samples from the filter bank.
3.2. Software implementation:

The goal has been to create a decoder that can be used by any application on any platform, and the decoding
software can execute in any stand-alone application It is always an advantage to be able to compile and run the
software in different environments.

 Figure 3.9 Developing of mp3 decoder for arm platform

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 96

The decoder software was initially developed using Microsoft Visual C++, writing only ANSI
compatible code. Later on, the same code was compiled using a cross compiler from ARM that produces
binaries for the ARM7 processors. The ARM Developer Suite TM (ADS) provides the software developer with
a complete kit of tools including a GUI, C and C++ compilers and linkers in an integrated environment, which
can be used to develop application code for the ARM.

Initially decoder software coded in ANSI C, for this code corresponding optimized assembly code is
generated by the arm compiler (provided by ADS).With this decoder implementation the MP3 decoder is
consuming around 2269 MIPS(millions of instructions per second, it is measured by profiling,(profile is one tool
provided by ADS). it is not at all useful for real time playing .The observed things in this profile is IMDCT and
subband synthesis are consuming large amount of time, because these two functions IMDCT and polyphase
subband synthesis are DSP processes ,no specific
instructions are available for arm processor, so these two functions are code in handwritten Assembly, with this
MP3decoder the processor time consumption is reduced to 32 MIPS

3.3. Experiment:

Development board:

The platform for this master thesis is the AT91SAM9263 Target board. It contains a micro controller, static
memory, flash memory and an FPGA1. Expansion ports are available for interfacing with other hardware
devices.The software is developed on a workstation and then downloaded and executed on theTarget board. The
development board communicates with the workstation using a Interface.i.e.In _Circuit Emulator.
The microcontroller on the Target board is based on a CPU core from ARM, known as ARM7. The ARM7 core
is a 32-bit microprocessor using RISC technology with a 3-stage pipeline.

Figure 3.10 MP3 DECODERON ARM SET_UP DIAGRAM

The ARM7 binary mp3 decoder is loaded on to the AT91SAM9263 board, through interface debugger ICE. The
input to this MP3 decoder is .mp3 extension file ,the MP3 decoder will decodes compressed MP3 audio and
generates decompressed format of MP3 i.e. PCM format will be stored in the target board memory.

The screen (PC workstation) displays the frame numbers while decoding until it reaches the End of
stream. On the completion find the copy of the file with .pcm extension which is the decompressed or decoded
version of mp3 .This is standard audio format which can be played on any audio device (using cool edit pro
tool).

C.1 Target Board:

The target board that is used to run the MP3 decoder is AT91SAM9263. It is Atmel 32- bit microcontroller. The
target processor includes ARM9 platforms.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 97

Figure 4. AT91SAM9263 Block Diagram

DESCRIPTION:
The AT91SAM9263 32-bit microcontroller, based on the ARM926-EJ-S processor, is architectured on a 9-layer
matrix, allowing a maximum internal bandwidth of nine 32-bit buses.

It also features two independent external memory buses, EBI0 and EBI1, capable of interfacing with a
wide range of memory devices and an IDE hard disk. Two external buses prevent bottlenecks, thus guaranteeing
maximum performance.

The AT91SAM9263 embeds an LCD Controller supported by 2D Graphics Controller and a 2- channel
DMA Controller, and one Image Sensor Interface. It also integrates several standard peripherals, such as
USART, SPI, TWI, Timer Counters, PWM Generators, Multimedia Card interface and one CAN Controller.
When coupled with an external GPS engine, the AT91SAM9263 provides the ideal solution for navigation
systems.
Features:

 Incorporates the ARM926EJ-S™ ARM® Thumb® Processor
o DSP Instruction Extensions, Jazelle® Technology for Java® Acceleration
o 16 Kbyte Data Cache, 16 Kbyte Instruction Cache, Write Buffer
o 220 MIPS at 200 MHz
o Memory Management Unit
o EmbeddedICE™, Debug Communication Channel Support
o Mid-level Implementation Embedded Trace Macrocell™

 Bus Matrix

o Nine 32-bit-layer Matrix, Allowing a Total of 28.8 Gbps of On-chip Bus Bandwidth
o Boot Mode Select Option, Remap Command

 Embedded Memories
o One 128 Kbyte Internal ROM, Single-cycle Access at Maximum Bus Matrix Speed
o One 80 Kbyte Internal SRAM, Single-cycle Access at Maximum Processor or Bus
o Matrix Speed
o One 16 Kbyte Internal SRAM, Single-cycle Access at Maximum Bus Matrix Speed

 Dual External Bus Interface (EBI0 and EBI1)
o EBI0 Supports SDRAM, Static Memory, ECC-enabled NAND Flash and
o CompactFlash®
o EBI1 Supports SDRAM, Static Memory and ECC-enabled NAND Flash
o

 Image Sensor Interface

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 98

o ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate
o 12-bit Data Interface for Support of High Sensibility Sensors
o SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format

 USB 2.0 Full Speed (12 Mbits per second) Host Double Port
o Dual On-chip Transceivers
o Integrated FIFOs and Dedicated DMA Channels

 USB 2.0 Full Speed (12 Mbits per second) Device Port
o On-chip Transceiver, 2,432-byte Configurable Integrated DPRAM

 Ethernet MAC 10/100 Base-T
o Media Independent Interface or Reduced Media Independent Interface
o 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit

 Fully-featured System Controller, including
o Reset Controller, Shutdown Controller
o Twenty 32-bit Battery Backup Registers for a Total of 80 Bytes
o Clock Generator and Power Management Controller
o Advanced Interrupt Controller and Debug Unit
o Periodic Interval Timer, Watchdog Timer and Double Real-time Timer

 Reset Controller (RSTC)
o Based on Two Power-on Reset Cells, Reset Source Identification and Reset Output Control

 Shutdown Controller (SHDWC)
o Programmable Shutdown Pin Control and Wake-up Circuitry

 Clock Generator (CKGR)
o 32768Hz Low-power Oscillator on Battery Backup Power Supply, Providing a Permanent

Slow Clock
o 3 to 20 MHz On-chip Oscillator and Two Up to 240 MHz PLLs

 Power Management Controller (PMC)
o Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
o Four Programmable External Clock Signals

 Advanced Interrupt Controller (AIC)
o Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
o Two External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected

 Debug Unit (DBGU)
o 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access

Prevention
 Periodic Interval Timer (PIT)

o 20-bit Interval Timer plus 12-bit Interval Counter
 Watchdog Timer (WDT)

o Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock
 Two Real-time Timers (RTT)

o 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler
 Five 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC, PIOD and PIOE)

o 160 Programmable I/O Lines Multiplexed with Up to Two Peripheral I/Os
o Input Change Interrupt Capability on Each I/O Line
o Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output

 One Part 2.0A and Part 2.0B-compliant CAN Controller
o 16 Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter

 Two Multimedia Card Interface (MCI)
o SDCard/SDIO and MultiMediaCard™ Compliant
o Automatic Protocol Control and Fast Automatic Data Transfers with PDC
o Two SDCard Slots Support on eAch Controller

 Two Synchronous Serial Controllers (SSC)
o Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
o I²S Analog Interface Support, Time Division Multiplex Support
o High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer

 One AC97 Controller (AC97C)
o 6-channel Single AC97 Analog Front End Interface, Slot Assigner

 Three Universal Synchronous/Asynchronous Receiver Transmitters (USART)
o Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester

Encoding/Decoding

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 99

o Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
 Two Master/Slave Serial Peripheral Interface (SPI)

o 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
o Synchronous Communications at Up to 90Mbits/sec

 One Three-channel 16-bit Timer/Counters (TC)
o Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
o Double PWM Generation, Capture/Waveform Mode, Up/Down Capability

 One Four-channel 16-bit PWM Controller (PWMC)
 One Two-wire Interface (TWI)

o Master Mode Support, All Two-wire Atmel® EEPROMs Supported
 IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins
 Required Power Supplies

o 1.08V to 1.32V for VDDCORE and VDDBU
o 3.0V to 3.6V for VDDOSC and VDDPLL
o 2.7V to 3.6V for VDDIOP0 (Peripheral I/Os)
o 1.65V to 3.6V for VDDIOP1 (Peripheral I/Os)
o Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM0/VDDIOM1 (Memory I/Os)
o periodic interval Timer, Watchdog Timer and Double Real-time Timer

 Reset Controller(RSTC)
o Based on Two Power-on Reset Cell, Reset source identification and Reset Output control

 Shut down controller (SHDWC)
o Programmable Shutdown Pin Control and wake-up Circuitry

 Clock Generator (CKGR)
o 32768Hz Low-power Oscillator on Battery Back-up Power Supply, providing a permanent

slow clock
o 3 to 20 MHz On-chip oscillator and two up to 240 MHz PLLs

 Power Management Controller(PMC)
o Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
o Four Programmable External Clock Signals

 Advanced Interrupt Controller(AIC)
o Individually Mask able, Eight-level Priority, Vectored interrupt Sources
o Two External interrupt sources and one fast interrupt source, spurious interrupt protected

 Debug Unit (DBGU)
o 2-wire UART and support for debug communication channel, programmable ICE Access

Prevention
 Periodic Interval Timer(PIT)

o 20-bit interval timer plus 12-bit interval counter
 Watchdog Timer(WDT)

o Key-protected, programmable only once, windowed 16-bit counter running at slow clock
 Two Real-time timers(RTT)

o 32-bit free-running backup counter running at slow clock with 16-bit Prescaler
 Five 32-bit parallel Input/output Controller (PIOA,PIOB,PIOC,PIOD and PIOE)

o 160 Programmable I/O Lines Multiplexed with Up to Two Peripheral I/Os
o Input Change interrupt Capability on Each I/O line
o Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output

 One part 2.0A and Part 2.0B-compliant CAN controller
 16 Fully-programmable Message Object mailboxes, 16-bit Time Stamp Counter

 Two Multimedia Card Interface(MCI)
 SDCard/SDIO and MultiMediaCard™ Compliant
 Automatic Protocol Control and Fast Automatic Data Transfer with PDC
 Two SDCard Slots Support on each controller

 Two Synchronous Serial Controller(SSC)
 Independent Clock and Frame Sync Signal for each receiver and transmitter
 I2S Analog interface support, Time Division Multiplex Support
 High-speed Continuous data stream capabilities with 32-bit data transfer

 One AC97 Controller (AC97C)
 6-channel Single AC97 Analog Front End Interface, Slot Assigner

 Three Universal Synchronous/Asynchronous Receiver Transmitter(UASRT)

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 100

 Individual Baud Rate Generator, IrDA Infrared Modulation/Demodulation, Manchester
Encoding/Decoding

 Two Master/Slave Serial Peripheral Interface(SPI)
 8 to 16-bit Programmable data Length, Four External Peripheral Chip Selects
 Synchronous Communication at Up to 90 Mbits/sec

 One Three-channel 16-bit Timer/Counter (TC)
 Three External Clock inputs, two Multi-purpose I/O Pins per channel
 Double PWM Generation, Capture/Waveform Mode, Up/Down Capability

 One Four-Channel 16-bit PWM Controller (PWMC)
 One Two-wire Interface(TWI)

4. SIMULATION RESULTS:

SCREEN SHOTS:

Figure4.1 MP3decoder software (on arm tools i.e.metroworkscode warrior)

 Metroworks code warrior is one of the window of the arm tools on this window MP3 decoder software
is weitten in c.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 101

AXD DEBUGGER

Figure 4.2 Each function in the MP3decoder

 Here every function in MP3 decoder (i.e. Frame synchronizatuin,huffman decoding, requantization.

descaling,reording, stereoprocessing, aliasreconstruction, IMDCT, frequency inversion and systhesis
polyphase filter bank)

Figure4.3 Generated assembly code for corresponding c code

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 102

 Here assembly code is generated for corresponding c code by compiler id provided by ARM tools.

Figure4.4 Enabling the target board

 Here Target board is enabled to download the MP3 decoder software,MP3 audio on to the target board
from PC workstation.

Figure4.5 Loading the .mp3 input file on the board

 MP3 audio (i.e. .mp3 file) is downloaded on to the target board memory from PC workstation

Figure4.6 Saving the .pcm file on to the board

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 103

 Here .pcm file(decompressed file) is stored on to the target board memory ,it is generated after
decoding the mp3 audio (i.e. .mp3 file)

Figure4.7 Output of number of frames in .mp3 file(44 frames in one second audio)

 Here number of frames in mp3 audio are shown these are displayed while MP3 decoder is decoding the
mp3 audio(one second audio will takes around 44 frames).

Figure4.9 Mips (32)of fixed point MP3 DECODER

• Debugger Internals is one of the window of the ARM tools it provides lnformation about the no.of
cycles taken by the mp3(MIPS are the measure of power consumption)

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 104

Figure4.10 Output of MP3 decoder i.e. .pcm file on cool edit_pro tool

 Cool edit pro is the Audio tool used to play the audio after decoding the mp3 audio,the decoded audio
is played via cool edit pro tool,it also displays strenth(magnitude) of the audio and duration of the
audio.

Profiling:
The following information is captured by doing flat profiling using “armprof” tool on fixed point MP3 decoder.
The top 10 time consuming functions are considered here.

Name time%

xmp3_PolyphaseStereo 41.21%

xmp3_FDCT32 15.10%

HybridTransform 13.41%

xmp3_IMDCT 4.67%

DequantBlock 4.52%

idct9 4.42%

DecodeHuffmanPairs 4.19%

xmp3_MidSideProc 2.48%

xmp3_DecodeHuffman 2.40%

FreqInvertRescale 2.10%

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 105

Frequency Analysis

Figure4.11 Frequency Analysis on MP3 decoded file - Left Channel

Figure4.12 Frequency Analysis on MP3 decoded file - Right Channel

9. CONCLUSIONS:

 This Thesis has provided the reader with an insight to the MPEG-1 Layer III standard and thus given a
good preparation for a future encoder/decoder implementation. A decoder would be simpler to implement
bearing in mind that it only has to reconstruct the bit stream and does not need to be concerned about
psychoacoustics or the quality of the encoded data. Although this paper has given enough information on the
frame header and side information to be able to locate the frames, read the parameters and browse through them,
more detailed information regarding the sub procedures has to be examined to put this theory into practice. The
MPEG-1specification is a good place to start but additional papers will probably be useful since is ambiguous in
some parts and lacks details in other parts. The newest version of is recommended where previous type errors
have been corrected. This implemented MP3 decoder on ARM7TDMI can play MP3 stereo in real time with
low power consumption if we operate any portable device ideally for MP3 playing the battery will work upto
26 hours

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 106

10. REFERENCES:

[1] Ted Painter, Andreas Spaniels, “A Review of Algorithms for Perceptual Coding of Digital Audio Signals”
[2] K. Salmons, “Design and Implementation of an MPEG/Audio Layer III Bitstream Processor”, Master´s thesis, Aalborg University,

Denmark, 1997
[3] International Organization for Standardization webpage, http://www.iso.ch
[4] Scot Hacker, Mp3: The Definitive Guide, O´REILLY 2000
[5] K. Brandenburg, G. Stoll, “ISO-MPEG-1 Audio: A Generic Standard for Coding of High Quality Digital Audio”
[6] MP3´ Tech, http://www.mp3-tech.org/
[7] ID3.org, http://www.id3.org
[8] ISO/IEC 11172-3 ”Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 3”
[9] M. Sieler, R Sperschneider, ” MPEG-Layer3 Bitstream Syntax and Decoding”

Authors Biography:
1 E.KALPANA working as an Assistant Professor in ECE department at Vidya Jyothi Institute of

Technology, Hyderabad from 2007.she is having more than 4years experience as an assistant professor.

Her areas of research interests include Waveguides, Transmission lines, Electromagneticwaves, Antennas,
Microwave engineering, and Embedded systems.

 2VARADALA SRIDHAR is from HYDERABAD,ANDHRAPRADESH.Completed M.TECH in
ECE with specialization (WIRELESS AND MOBILE COMMUNICATION SYSTEMS) from vardhaman
college of engineering affiliated by JNTUH in 2011.he has completed M.Sc (IT)from Nagarjuna University,
guntur, AndhraPradesh.and B.TECH in ECE from vidya jyothi institute of technology affiliated by JNTUH in
2007. Currently he is working as an Assistant professor in ECE department at Vidya Jyothi Institute of
Technology, Hyderabad from 2010. His areas of research interests include

WirelessandMobilecommunicationssystems,Digitalsignalprocessing,Imageprocessing,Telecommunications,com
munication systems, Signal processing,Embedded systems.He is Lifetime Membership of ISTE, IETE.

 3 M.REJENDRA PRASAD obtained his B.E and M.E Electronics and communication engineering
and digital systems from OSMANIA UNIVERSITY, hyderabad.HE has 11 years of experience in embedded
and telecom research and development. He is currently working as anassociateprofessor,ECE, DEPARTMENT,
VJIT, HYD.his main interests are embedded systems, wireless protocol, and RTOS.

E.Kalpana et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.01 September 2012 107

