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Abstract 

The aim of this work is to compare the prediction of several second order models in the results of direct 
numerical simulations of Jacobitz [1]. The second order models retained for this work are the classic models of 
Launder, Reece and Rodi (LRR) [2], Craft and Launder (CL) [3,4], Shih and Lumley (SL) [5] and the Speziale, 
Sarkar and Gatski (SSG) model [6]. The main objective is the prediction of the equilibrium states of 
dimensionless parameters characterizing the homogeneous flows considered and for a turbulence submitted to 
an inclined shear ( 4/  ). A non dimensional form of the evolution equations have been obtained after 
modelling and introducing kinematics and scalars dimensionless parameters. A fourth order Runge–Kutta 
method is used for the integration of the modeled differential equations sumitted to the initial conditions of the 
results of direct numerical simulations of Jacobitz. A general tendency to asymptotic equilibrium states for the 
dimensionless parameters has been observed. 

Keywords: Second order models, Asymptotic equilibrium states, Stratified turbulence, Inclined shear. 

Nomenclature 

b                                    Anisotropic tensor of  Reynolds 3/2/ ijjiij kuub   

iU                                  I-th component of mean velocity (m.s-1) 

iu                                   I-th component of  the fluctuating velocity (m.s-1) 

P                                    Pressure (N.m-2) 
p                                    Fluctuation of  the pressure (N.m-2) 
S                                    Mean shear (s-1) 

S                                  Mean scalar gradient (ºC.m-1) 

g                                    Constant of gravity 
t                                     Time (s) 

iR                                  Dimensionless Richardson number
2

0 S

S

T

g
Ri

  

pC                                 Chaleur massique of  constant pressure (J K-1 mol-1) 

ji uu                              Reynolds stress tensor (m2s-2) 

iu                               Turbulent flux of the scalar (mºC s-1) 

K                                   Turbulent kinetic energy  k= 2/ii uu  (m2s-2) 

qpU ,                              Gradient of mean speed (s-1) 

iT ,                                 Gradient of the scalar (ºC.m-1)    

ix                                   Component of an orthonormal catesian coordinate system (m) 
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Greek letters : 
α                                    Thermal diffusivity 
                                   Viscosity of  flux (kg m-1 s-1) 

                                    Kinematic viscosity 

   (m2 s-1) 

                                   Conductibilité of the scalar (W m-1 ºC-1) 

                                   Terms of gravité 
0T

g
  (m2 s-2 ºC-1) 

                                    Non dimensional time St  

ij                                  Kronecker  Symbol   

                                   Fluctuation of the scalar (ºC) 

0                                  Density of reference (kg m-3) 

2                                 Scalar of variance (ºC2) 

                                   Terms of dissipation of turbulent kinetic energy  (m2 s-3) 

                                 Terms of dissipation of  variance of the scalar (ºC2 s-1) 

ij                                  Terms of dissipation of tensor of Reynolds (m2 s-3) 

 i                                 Terms of dissipation of the scalar flux turbulent  (m ºC s-2) 

ij                                  Terms of pressure-strain correlation (m2 s-3) 

i                                 Terms of pressure- scalar gradient correlation (ºC m s-2) 

Subscripts : 

SSG                              Speziale,Sarkar and Gatski model 
SL                                Shih and Lumley model 
CL                               Craft and  Launder model 
LRR                             Launder, Reece and Rodi model 
DNS                             Direct Numerical Simulation 
RK4                              Fourth order Runge-Kutta method  

1. Introduction   

The study and the prediction of the equilibrium states of homogeneous turbulence has been the subject of a 
variety of experimental, computational, and theoretical studies during the past four decades. The popularity of 
this flow lies in the fact that it accounts for an important physical effect the alteration of the turbulence structure 
by shear in a simplified setting unencumbered by such complications as rigid boundaries and mean turbulent 
diffusion. With  this framework, the study  carried out by Speziale et al. [7] constitute a reference  essential for 
the prediction of the eqilibrium values in  sheared homogeneous turbulence. Von Karman [8] 
first proposed the problem of homogeneous shear flow which gave rise to some mathematical studies. The first 
successful experimental realization of homogeneous shear flow in the laboratory was achieved by Rose [9] and 
was then followed by a series of landmark experiments by Champagne et al. [10] and  Harris et al. [11]. In fact, 
equilibrium states of several benchmark homogeneous shear flows have been used in the development and 
analysis of turbulence models [12,13]. 
In recent years, research has been focused on the study of homogenous stably stratified shear flows. Numerous 
laboratory experiments on vertically stably stratified homogenous shear flows have been performed. On the 
other hand, numerical simulations of such flows have been carried out by Gerz et al. [14] and  Holt et al. [15]. 
The global parameter that measures the relative influence of shear and stratification on the flow is the gradient 

Richardson number 
2

2

S

N
Ri  , where 

0

2


Sg

N   is the Brunt-Väisälä frequency and 

   231

2

21 // dxUddxUdS   is the shear rates. An important property of homogeneous turbulent 

flows is the appearance of dynamic state variables that tend to approach equilibrium values in the long time 
limit. The equilibrium states provide an important benchmark in the calibration of closure models. For 
homogeneous turbulent flows without buoyancy effects, the fixed points associated with the equilibrium can be 
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determined [16], these fixed points can then be used to assess the suitability of higher-order models and their 
ability to predict the correct equilibrium values. For example, Abid et al. [17] calculated the equilibrium states 
for homogeneous turbulent shear flow and channel flow using Reynolds stress closures in order to assess their 
predictive performance. Tavoularis et al. [18] conjectured that equilibrium states also exist for buoyant shear 
flows; however they take a longer time to achieve due to the interaction between shear and buoyancy. The 
approach to equilibrium turbulence for buoyant shear flow is much more complicated. Even the parameters that 
characterize the equilibrium states are to date not known precisely. 
During last years, Gerz et al. [14] were interested in the study of the direct digital simulations [19-20] for a 
homogeneous turbulence submitted to a vertical shear. They showed the influence of the Richardson number Ri 
on the turbulent sizes. Komori et al. [21] studied the case of a laminated flow in an opened water channel. 
Itsweire et al. [22] showed the importance of the Richardson number Ri on the evolution of turbulence. 
However, a more significant interest was allotted in the study of the equilibrium states of a turbulence 
presenting a stable stratification and a non-vertical shear [23]. In this context, only Jacobitz and al. [20] analysed 
the influence of the angle of shear inclination θ compared to the vertical on the evolution of the various 
turbulent parameters. They showed the importance of the equilibrium states associated with the non-dimensional 
kinematics and scalars parameters. 
The aims of this study is to confirm the existence of an asymptotic equilibrium states of a turbulence submitted 
to an inclined shear (θ=π/4). For this, the solutions obtained parameterized by Richardson number Ri, confirm 
the asymptotic behaviors of the non-dimensional kinematics and scalars parameters. Two of the most known 
second order models are retained for the pressure strain correlation, pressure scalar gradient correlation and time 
evolution equation of kinematic and thermal dissipations. The Speziale Sarkar and Gatski (SSG) model is 
retained for the terms of the pressure-strain correlation and is coupled with some classical turbulence models for 
the pressure scalar correlation, namely the Craft and Launder (CL) model, the Shih and Lumley (SL) model and 
the Launder, Reece and Rodi (LRR) model.  A pecular attention is accorded to the contribution of the SSG 
model on the modeling of turbulent shear flow. Our result will be compared to previous result of litterature, such 
as direct numirical simulation (DNS) of Jacobitz [24] and Jacobitz et al. [20]. 

2. Theoretical Background 

2.1 The governing equations  

The density  , the velocity iu , and the pressure p , denote fluctuations with respect to the mean density  , the 

mean velocity U , and the mean pressure p . The uniform mean density gradient 


S
x





3

 imposes a stable 

stratification which is hydrostatically balanced by a corresponding mean pressure gradient. The mean velocity 

 0,0,1UU   has two constant shear rates, a horizontal sin2
2

1 SS
x

U





 and a vertical one 

cos3
3

1 SS
x

U





. Here θ designates the angle between the shear and the vertical gradient of stratification 

3x
 

. Thus,   132 cossin ii xSxSU   . After the customary Boussinesq assumption, the equations 

governing the evolution of the fluctuating variables are as follows: 

0



i

i

x

u
           (1) 

   

3
0

2

0

132
1

32

1

cossincossin

i

kk

i

i

i
i

k

i
k

i

g

xx

u

x

p

uSuS
x

u
xSxS

x

u
u

t

u
































  (2) 

 
kkk

k xx
uS

x
xSxS

x
u

t 












 



2

3
1

32 cossin     (3) 

 

Lamia Thamri Naffouti et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 1 No.02 November 2012 128



2.2 Second-order equations 

The exact Reynolds stress transport equation is given by: 

ijijijij
ji BP

dt

uud
           (4) 

The terms, in the above equation, respectively, are the time rate of change, production due to mean shear ( ijP ), 

term of gravity ( ijB ), pressure strain correlation ( ij ) and viscous dissipation rate ( ij ) of Reynolds stress: 

13121312 cossincossin jijiijijij uuSuuSuuSuuSP     (5) 
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  2           (8) 

Given that  is the kinematic viscosity, 0 is the reference density of the fluid and  is the thermal expansion 

coefficient. Hence, the production terms are exact but the terms ij and ij  require modeling. 

Transport equations for the the components iu
 
of the turbulent scalar flux is: 

 


iiii
i BP

dt

ud
          (9) 

The terms, in the above equation, correspond to the time rate of change, thermal production ( iP ), term of 

gravity ( iB ), pressure–temperature gradient correlation ( i ) and viscous dissipation (  i ): 

31312 cossin uuSuSuSP iiii          (10) 
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A transport equations for the density variance 2  is derived from the transport equation of density (3) : 

 
2

2

 P
dt

d
          (14) 

32 uSP             (15) 

kk xx 






  2           (16) 

In the above equation, the term P is the production of temperature variance and the term   is the viscous 

dissipation rate of temperature variance. 
While considering the trace of the equation (4), we get the equation of evolution of the turbulent kinetic energy: 

 BPP
dt

dK
32           (17) 
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Where 2P  is the turbulence production term due to horizontal shear 
2

1

x
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


. 

212 sin uuSP            (18) 

3P  is the turbulence production term due to vertical shear 
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


.  

313 cos uuSP            (19) 

B the buoyancy term 
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and ε is the dissipation term. 
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From the density variance, the potential energy K  can be computed: 
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In cartesian notation, equations (4), (9), (14) and (17) are written on the following form: 
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3. Second-order modelling 

Second-order turbulence closure models are of great utility for the prediction of geophysical and engineering 

flows. The pressure–strain correlation ij , and the pressure–scalar gradient correlation i are besides the time 

evolutions of the dissipations  and  , the principal terms to be modelled in a second-order closure modelling 

of the flow considered here. 

In a stratified shear flow, the correlations ij  and i  are classically decomposed into three 

contributions [25]: 

)34(321
ijijijij  

)35(321
  iiii 

Where the contributions 1 are the turbulent-turbulent terms, the terms 2 represent the interaction between mean 
and turbulent flows. The terms 3 are terms due to buoyancy. 

3.1 The pressure strain-correlation 

Sarkar et al. [26] developed a model of the pressure strain correlation which take into account the condition of 
realisability [27] of Schumann and Shih and Lumley [28] and predict stable fixed points. 
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Where numerical values of constants are:  

3.14.025.18.08.14.3 3354321  CCCCCC   

The Zeman and Lumley model [29] has been retained for the buoyancy terms in pressure strain correlation : 


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3.2 The pressure scalar gradient correlation  

The SSG second order model for ij retained for the kinematic field has no extension to the scalar field. To 

obtain a system of closed equations, the Speziale, Sarkar and Gatski [6] model for the kinematic field is coupled 
with the Launder, Reece and Rodi model [3], the Shih and Lumley model (SL) [30] model and the Craft and 
Launder (CL) [31] model for the pressure scalar gradient correlation respectively.  

3.2.1 The Speziale, Sarkar and Gatski (SSG) model 

The Speziale, Sarkar et Gatski (SSG) second order closure model has know a great success during the last two 
decades. It has been submitted in addition to the kinematics constraints to the strong form of realisability. 
Furthermore it predicts stable fixed points [32]. The final form of this model is the followed one:  

21
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Where 3.14.025.18.08.1 335432  CCCCC   

3.2.2 The Craft and Launder (CL) model 

Craft and launder (CL) [4] developed a second-order closure model of pressure-strain and pressure-scalar 
gradient correlation [4, 31] retained the condition of two-dimensional turbulence which is summarized with the 
component normal speed to the wall is cancelled more quickly than the other components of the fluctuation 

speed.  It is translated for the heat flux 3u  by : 
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3.2.3 The Shih and Lumley (SL) model  

The application of the strict condition of realisability by Shih and Lumley model separately to the first and 

second terms of the pressure-strain and pressure-scalar gradient correlations   iij and
 
respectively leads to 

abordable and interesting froms of these models.
 
 

The final form of the model of correlation is 21
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3.2.4 The Launder, Reece and Rodi (LRR) model 

The LRR model [2] is most known for the pressure-strain correlation.   

The 1
i  term is the contribution non linear, as of return to the isotropy, which is written according to the 

turbulent iu  heat flux in the following form:   

ii u
k

C  
'
1

1            (46) 

With '
1C =3.2 is constant of Rotta [33], which translates speed with which the return to the isotropy of an 

initially anisotropic turbulence is carried out.  
2
i  is the linear term with the gradients mean velocity which is written:   

ikkkiki UuUu ,,
2 2.08.0            (47) 

4. Discussion of results 

4.1 Non-dimensional equations 

The previous differential equations are castled in non dimensional forms when non dimensional parameters b11, 
b22, b12, b13, b23,   and ε/KS are introduced for the kinematic field. In this section, all non dimensional 

parameters substitute previous turbulent ones ji uu , iu , K, ε and 2 . A closed system of non-dimensional 

parameters can be obtained by casting equations (23)–(33) in non-dimensional forms and introducing the non-
dimensional time τ = St. So transport equations for the above-mentioned parameters can be obtained: 
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In this level of work, the numerical resolution of the three systems of the non-linear differential equations , 
relating to the second-order models, parameterized by the Richardson number Ri and parameterized by the 
adimensional number ε/KS. The initial conditions of the results of the direct numerical simulation of Jacobitz et 
al. [19] have been retained and the fourth order Runge Kutta method has been used for integrating systems. The 
numerical integration has been conducted separately for the values 0.04, 0.08, 0.12, 0.16 and 0.20 of the non 
dimensional Richardson number Ri. The principal results are presented in the following paragraph.   

4.2 Numerical integration and results  

We start with the case of purely inclined shear. This case corresponds to θ=π/4 in the non-dimensional equation 
(23)-(33). A fourth order Runge-Kutta method is used for integrating the non-dimensional system of 10 non-
linear differential equations. 
The main objective of the present study is to determine the asymptotic behavior for a turbulence stratified 
presenting a inclined shear (θ=π/4), we must show the existence of the asymptotic equilibrium states of the  
models (SSG-LRR), (SSG-SL) and (SSG-CL) and we make a comparison between results obtained and result of  
the direct numerical simulation (DNS) of Jacobitz et al. [19]. 
The principal obtained results are presented in terms of the principal component of anisotropy b12, the evolution 
of the ratios K/E and Kρ/E, where E is total energy (E=K+Kρ). A general tendency to equilibrium states for the 
dimensionless parameters has been observed at long time evolution and confirm qualitatively one of the 
principal results obtained by the DNS of Jacobitz et al. [19]. 

Table1: Equilibrium states for the principal component of anisotropy (b
12

)∞ predicted by different models and with ε/KS=0.5 

b12 DNS SSG-LRR SSG-CL SSG-SL 
Ri=0.0 ... -0.142 -0.140 -0.0639 
Ri=0.05 ... -0.130 -0.136 -0.0581 
Ri=0.15 ... -0.107 -0.129 -0.0570 
Ri=0.2 -0,128 -0,097 -0,126 -0.0633 
Ri=0.4 ... -0.0741 -0.110 -0.0555 
Ri=0.6 ... -0.0678 -0.0950 -0.0553 
Ri=1.0 ... -0.0612 -0.0731 -0.0556 
 
However and as shown in Table 1, the coupling between the SSG model for the kinematic field and the CL 
model for the scalar field has shown the best agreement with the retained results of DNS of Jacobitz for the 
principal component of anisotropy (b12). This agreement is observed for the non dimensional Richardson 
number Ri=0.2. The coupling between the SSG and the LRR model has also shown a tendency to an equilibrium 
states for this parameter but the values predicted are approximately two times larger than the values of the DNS 
of Jacobitz [23]. The Coupling between the SSG model and the SL model has predicted at high stratification 
very large equilibrium values for this non dimensional parameter. Obtained results are better than those obtained 
in the previous study of Bouzaiane et al. [34] when the LRR, SL and the CL second order models respectively 
are retained for both kinematic and scalar fields. Therefore the models of the second degree of SSG improved of 
the forecasts of three models. 
In figure 1 is presented the time of evolution according to the time of the component b12  of the principal 
component of anisotropy b12. Three models SSG-SL, SSG-CL and SSG-LRR confirm here also the existence of 
an asymptotic equilibrium states for the compoen b12. However, we note that SSG-CL model shows a better 
agreement with values of DNS of Jacobitz [1] for non-dimensional time less than 30 (τ 30). Whereas the 
values predicted by two other models (SSG-SL and SSG-LRR) are lower approximately 40% than those of the 
DNS of Jacobitz. L'ordre de grandeur de valeurs prévues par des modèles est dans la même gamme des valeurs 
du DNS de Jacobitz [1].  
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Figure 1:  Time evolution of the component b12 for Ri=0.2 and ε/KS=0.5 

 
Let us now examine predictions of models for the principal component of anisotropy b12. Predictions of models 
at long time evolution are presented at figure 2. Here also the three models predict asymptotic equilibrium states 
at long time evolution and for the different retained values 0.00, 0.05, 0.15, 0.2, 0.4, 0.6 and 1.0 of the non 
dimensional Richardson number Ri.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 2:  Time evolution of the component b
12 according to SSG-LRR (a), SSG-CL (b) 

and SSG-SL (c)  

Figures 2 (a), (b) and (c) show the evolution of the principal component of anisotropy b12 as a function of the 
normalized time St=τ, obtained by the SSG-LRR, SSG-CL and SSG-SL models respectively. Three models 
confirm the existence of an asymptotic equilibrium states for the component b12.  Three models indicate also 
that (b12)οο grows with Ri growing from 0.00 to 1.0. We note also that the asymptotic state for the SSG-LRR 
model and the SSG-CL model are reached very quickly compared to the prediction of the SSG-SL model. 
A surprising result is observed, the coupling SSG-LRR and SSG- CL reproduce qualitatively growth of (b12) 
with growing Ri from 0.00 to 1.0.  
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Thereafter we study in table 2 the influence of the Richardson number Ri on the kinetic energy K and the 
potential energy Kρ for Ri=1.0 and Ri=2.0 according for the three retained second-order models SSG-LRR, 
SSG-CL, SSG-SL respectively. 

Table 2: Asymptotic equilibrium values of non-dimensional parameters K/E and Kρ/E 

 for the inclined shear (θ=π/4)  

                          (K/E)∞                          (Kρ/E)∞ 
Ri DNS SSG-

LRR 
SSG-CL SSG-SL DNS SSG-

LRR 
SSG-CL SSG-SL 

0.2 ... 0.91 0.96 0.94 ... 0.087 0.03 0.05 
0.4 ... 0.79 0.91 0.89 ... 0.2 0.08 0.1 
0.6 ... 0.69 0.85 0.81 ... 0.3 0.14 0.18 
1.0 0.6 0.56 0.75 0.77 0.4 0.43 0.24 0.22 
2.0 0.52 0.48 0.64 0.63 0.42 0.51 0.35 0.36 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3:  Time evolution of the ratios  K/E and K
ρ
/E according to SSG-LRR (a), SSG-CL (b) 

and SSG-SL (c) 
In figure 3, we present according to time St=τ, the evolution of the ratios K/E and Kρ/E, where E is total energy 
(E=K+Kρ). The asymptotic equilibrium values of K/E and Kρ/E are slightly different from the mean value 0.5.  
The second order models seem to divide total energy E into equal parts between the kinetic and potential terms. 
Where these ratios are obtained to leave adimensional ratio η which are written in the following forms:  
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Evolutions of the normalized turbulent energy K/E and Kρ/E according to both non dimensional time St=τ and 
the non dimensional Richardson number Ri are presented in Figures 4 (a), (b) and (c) are relative to SSG-LRR, 
SSG-CL and SSG-SL respectively. 
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Figure 4: Time evolution of the ratios  K/E and K
ρ
/E according to SSG-LRR (a), SSG-CL (b) 

and SSG-SL (c) for differentes values of Richardson 

In figures 4 (a), (b) and (c) are shown the time evolution of the ratio K/E and Kρ/E for the mentioned values of 
Ri. Three models confirm here also the existence of an asymptotic equilibrium states for the non-dimensinal 
ratios for the ratios  K/E and Kρ/E. For Kρ/E, the asymptotic states is reached here more quickly at high 
stratification (Ri=1.0 and 2.0) than at low stratification (Ri=0.2, 0.4 and 6.0 ). Furthermore, it is clear from these 
figures that for the CL model, the asymptotic equilibrium states are slightly different for cases of high 
stratification.  
Thereafter, we propose to study the influence of the Richardson number Ri on the evolution of rate of non-
dimensional shear ε/KS.  In figures 5 (a), (b) and (c), we observe  the evolution of  ε/KS according to non-
dimensional time τ=St relating to the SSG-LRR, SSG-CL and SSG-SL models for the values of Ri equal 
respectively to 0.0,  0.05,  0.15,  0.2,  0.4,  0.6 and 1.0. The SSG-LRR model confirm the existence of an 
asymptotic equilibrium states for the component ε/KS and that the values of equilibrium (ε/KS)οο decrease when 
Ri believes of the value 0.0 (which corresponds to a weak stratification) in the value 1.0 (which corresponds to a 
strong stratification). The asymptotic states of equilibrium is reached more quickly for          SSG-SL more than 
that of other models SSG-CL.   
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 5:  Evolution  of ε/KS for different values of Ri according to SSG-LRR (a),SSG-CL (b) and SSG-SL (c) 

The influence of the dimensionless shear number ε/KS on the principal component of anisotropy b12 is observed 
in figures 6 (a), (b) and (c).  
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Figure 6:  Evolution of the component b

12
 acording to SSG-LRR model (a),  

SSG-CL model (b)  and SSG-SL model (c) 

Figures 6 (a), (b) and (c) show the evolution of the principal component of anisotropy b12 as a function of the 
normalized time St=τ, obtained by the SSG-LRR, SSG-CL and SSG-SL for differnts values of ε/KS which 
varied of 1/20 until the 1/2. Three models confirm the existence of an asymptotic equilibrium states for the 
component b12. We note that when the values of ε/KS decrease by 1/2 until the 1/20, the tensor of anisotropy of 
Reynolds decreases too for SSG-SL, SSG-CL and SSG-LRR models. 

Conclusion 

In the present study a stably stratified sheared turbulence has been investigated using second order modelling of 
equation of second order moments. The second order model of SSG has been retained for the kinematic field 
whereas three well known models are retained for the scalar field respectively. Modelled equations are castled in 
a non dimensional form when non dimensional kinematics and scalar parameters are introduced. Three non 
linear differential systems submitted to initial conditions of the results of DNS of Jacobitz have been integrated 
using the fourth order Rung-kutta method advanced to long time evolution. A general tendency to asymptotic 
equilibrium states has been observed. The SSG model is shown to be of a positive contribution in predicting 
asymptotic equilibrium values compared to our previous results [34]. Improve in predicting asymptotic 
equilibrium states has been essentially observed for the principal component of anisotropy b12, for the 
normalized turbulent energy K/E and Kρ/E and for the component ε/KS. We think that a correction of model 
coefficients by introducing the non dimensional Richardson number could be an important way to improve the 
model predictions for the component b12 of the anisotropic tensor. The effect of the non dimensional shear 
number [35] ε/KS on the evolution of a stably stratified turbulence and the Study of a stably stratified turbulence 
submitted to an inclined shear by second order models seem to be important directions of investigations. We 
point out here that in contrast with the results of direct numerical simulations where Jacobitz et al. [1] have 
studied the effect of the turbulent Reynolds number on the evolutions of turbulent parameters, the SSG second 
order model and other retained models do not take into account of the importance of such parameter. This can 
be considered as a border of the second order modelling retained in the present work. 
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