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Abstract 

The new sort developed by Sundararajan and Chakarborty (2007), a modification of Quick sort that removes the 
interchanges, considers the first element of the array as pivot element. In this paper the pivot element taken is a 
randomly selected element of the array. The effect of binomial  parameters are examined on the average sorting 
complexity using Principal Component Analysis approach. An attempt is also made to focus on a comparative 
study of the two algorithms: one called the random pivot element algorithm (RPA) and the other one with first 
element as the pivot element algorithm called first pivot element algorithm (FPA). The results reveal that the 
RPA can sort larger number of observations than the FPA. 

Keywords 

Parameterized Complexity; Principal Component Analysis; random pivot; factorial experiments 

1. Introduction 

Parameterized complexity focuses on classifying computational problems according to their inherent difficulty 
with respect to multiple parameters of the input. However, since time is both a cost and a weight, we have 
ventured to work directly on program run time. 

Our work is motivated by the pioneering works on computer experiment (a series of runs of a code for various 
inputs) of Prof. Jerome Sacks and others (Sacks et. al. 1989). The recently published book by Chakraborty and 
Sourabh (2010) describes the design and analysis of computer experiments when the response is a complexity 
such as time.  

 A new sorting mechanism  developed by Sundararajan and Chakraborty (2007)  is based on the same logic as 
that of Quick sort but sorts the data without using interchanges and has the same average time complexity 
(O(nlogn)) and the same worst case complexity O(n2) as Quick sort has. In the new sort originally proposed, the 
pivot element taken was the first element of the array. In the present study, the pivot element is taken as a 
randomly selected array element.   

In the recent past much of the work is done on parameterized complexity. For a helpful review, with special 
emphasis on sorting, Mahmoud (2000) may be consulted. Some of our contributions on parameterized 
complexity are the recent works of  Anchala  and Chakraborty (2007), Anchala and Chakraborty (2008), 
Prashant, Anchala and Chakraborty (2009). For the general problem of parameterized complexity theoretically, 
we refer to Flum and Grohe (2006). The first systematic work on this is credited to Downey and Fellows (1999). 

In this paper we have  examined the  parameterized complexity of  the new sorting technique when the pivot 
element is one of the randomly selected elements of the array generated randomly from binomial distribution. 
The logic behind having binomial inputs is that any population can be easily dichotomized by some criterion. 

To investigate the effect of binomial parameters on the sorting efficiency, a 3 cube factorial experiment is 
employed. To investigate further the form of relationship between the sorting time and binomial parameters, the 
principal component analysis is used. (Neter et. al. 1996) 

From now, we shall  abbreviate  the sorting algorithm with pivot element randomly selected element by  RPA 
(Random Pivot element Algorithm)  and the algorithm with  pivot element  the first element by FPA (First Pivot 
element Algorithm). 

 

2. RPA  Analysis 

To examine the effect of binomial parameters on sorting efficiency, a 3-cube factorial experiment was employed 
with 3 factors  each at three levels. The three factors included were the numbers to be sorted (n) and the two 
parameters of binomial distribution (m and p).The levels of the factors are given below in table 1 
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Table 1: Factors and their levels 

                   Factor                                   level 
                     n                        10000     15000     20000 
                     m                           100         150         200 
                     p                             0.2         0.5           0.8 

Five replications of sorting time were made for each of the  27  combinations (different factors combined at 
different levels of each factor which generates 27 combinations) were obtained using Visual C++ code (see 
Appendix), and average run time was evaluated thereon. 
To know the singular and interaction effects of different factors, the 3-cube factorial experiment was performed 
using MINITAB (13.0). The results are  given in the table 2.1. 

Table 2.1: Results of 3-cube factorial experiment 
 

Sources                  d.f                     s.s                         m.s.s                  F 
     Rep                      4                   .0003                      .0001               0.36 
        n                        2                38.6580                 19.3290             8.6E+04 
        p                        2                    .0158                     .0079             35.20 
        m                       2                    .1050                     .0520             233.21 
      n*p                      4                    .3920                    .0980             435.52 
      n*m                     4                     .0086                    .0021                9.54 
      p*m                     4                     .2375                    .0594             263.83 
     n*p*m                  8                     .1729                    .0216               96.03 
     error                  104                     .0234                    .0002 
     Total                  134                     

It is obvious that the sorting time has to increase as the number of observations to be sorted (n) is increased. 
Besides n, the parameters p and m are also important  factors in explaining the complexity of the algorithm,  as 
is clear from the  above table, where m is highly significant and  p is moderately significant. As regards the two 
factor interaction effects, np and pm are very highly significant and nm is nearly significant.  It may be argued 
that the n numbers to be sorted and m (binomial parameter), when considered  individually, have high 
precedence in explaining sorting complexity; at the same time these two also show marked  effects at different  
probability points  as is clear from very high values of  F corresponding to np and pm interactions.  
Interestingly, the two parameters of the binomial  distribution  also are found to interact among themselves, but 
this effect is moderately significant. (F =9.54 only for pm interaction) 

 We have observed that all the three factors play an important role in describing the complexity of  RPA 
algorithm . Now we try to examine the order of complexity explained by individual factor. 

(i) n-t plot:    Taking m=150 and p=.5 fixed, the values of time t were  

plotted against different values of n using MINITAB statistical package . The graph obtained is given in fig. 2.1. 

Fig :2.1  : n-t plot 
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The figure shows time as a second degree polynomial in n .As such the average time complexity of RPA sorting 
algorithm is empirically of the order Oemp(n

2).  

Remark: Empirical O here is the bound-estimate of a statistical bound. A statistical bound is a weight based 
bound which takes all the operations collectively. A mathematical complexity bound, in contrast, is always 
count based and operation specific.  [Chakraborty and Sourabh (2010)]. 

 (ii) m-t plot and p-t plot  

The plot of time verses m keeping  n=15000 and p=.5 fixed   is given in figure 2.2 and the plot of time verses p, 
keeping n=15000 and  and m=150 fixed , is given in fig 2.3 

Fig 2.2     m- t graph 
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Fig 2.3  p-t plot 
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Time versus m and time versus p  graphs  do not show any systematic pattern.  However, time plotted against 
the values of  log2p gives a linear trend implying thereby that sorting efficiency of RPA  is of Oemp(log2p). See 
fig. 2.4. 
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Fig. 2.4 time verses log2p plot 
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But as for as m-t plot  stands, any transformation made on time or m  or both to find a systematic pattern 
between time and m, remained unsuccessful  surprisingly even though the  time complexity significantly 
depends on the value of m. It may be due to the non independence of error terms which is clear from the 
following plots of residuals versus fitted value (fig. 2.5).   

Fig 2.5  :  Residuals verses fitted values 
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The sorting time when regressed on the three factors gives a high value of R2=97.3, indicating thereby that all 
the three factors highly qualify for explaining the time complexity of the algorithm.  

The regression equation is 

time = - 0.788 +0.000131 n - 0.0380 p -0.000512 m  

Interestingly, the distributional  parameters produce negative effect on the complexity. With increase  in  p and 
m, average RPA complexity decreases. A high value of R2 does not always mean a good fit. The high values of 
interactions may cause the presence of multicollinearity in the independent variables.  As such  to nullify  the 
effect  of multicollinearity  and to find the exact  relationship between time and the three factors, we apply the 
method of Principal Component analysis . 

Table  2.2 : The results of the principal component analysis 

            Variable          PC1       PC2         PC3 
 

                 n               1.000              0.000              0.000 
                    p               0.000             0.000             -1.000 

                 m               0.000              1.000              0.000 
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 Where   pc1, pc2 and pc3 are the three principal components. 

The regression equation is given by 

time = - 0.788 + 0.0380 pc1 -0.000512 pc2 +0.000131 pc3 

with a value of R2 = 97.4% 

3. FPA  Analysis 

In this section we consider the usual New sorting technique with  pivot element as the first element of the array. 

The n array elements are randomly generated from B (m,p) and the three levels of input parameters  are as given 
below 

n:       5000     10000      15000 

m:          50         100          150 

p:          0.3           0.5          0.8 

the results 0f 3-cube factorial experiments are presented in the table 3.1. 

Table 3.1 : Results of 3-cube Factorial Experiment 

__________________________________________________________ 
Sources                  d.f                     s.s                         m.s.s                  F 
     Rep                      4                  .00052                   .00013              0.58 
        n                        2               14.01733               7.00867            3.2E+04 
        m                       2                   .08025                 .04013             180.35 
        p                        2                   .05721                 .02860             128.57 
      n*m                     4                   .03740                 .00935               42.03 
      n*p                      4                   .01230                 . 00308               13.82 
      m*p                     4                   .03043                  .00761               34.19  
      n*p*m                 8                   .07930                  .00991               44.56 
     error                  104                  .02314                  .00022         
     Total                  134               14.33788 
__________________________________________________________ 

Here all  the three factors considered  individually, have very high impact on sorting efficiency  of FPA. As far 
as their interactive effects are considered , all the two factor  interactions are moderately significant.     

Next we study n-time, p-time ,  m- time plots separately. 

(i)   n-time graph 

Fig-3.1 
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Fig:3.2 
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The first figure (fig. 3.1) expresses time as a polynomial of third degree in n and the second figure (fig. 3.2) 
shows it as a polynomial of degree 2 in n. for both the plots  R2  >=95%  Thus we may conclude that average 
time complexity of APF may be taken as  O(n2)  or O(n3) experimentally. We shall accept the former as it is a 
stronger statement.  

(ii) Fig. 3.3 p-time graph 
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The above fig (fig. 3.3) shows that average time complexity can nearly be expressed as a quadratic function in p 
with a value of R2=81.5%  

(iii) m-time graph 
Fig :  3.4 
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Fig: 3.5 
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  The sorting time as a function  of  firsst degree or 2nd degree in  m does not give a moderately good fit  as the 
value of R2 is only 68% in first case and 69% in 2nd case.  

Let us  have a look on residuals versus  fitted values  and normal probability plots.  

Fig- 3.6: Residuals  verses fitted value plot 
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Fig-3.7 : Normal probability plot 
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         Normal probability plot is a clear indication of the fact that there is almost a linear trend between sorting 
time and m but on the other hand the residual verses fitted plot gives an indication that the errors terms are not 
independent.  
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It may be argued therefore that  the average time complexity  of FPA  in fact should be of O(m), but due to the 
fact that the error terms are not independent , it depicts an approximate linear relation between time and the 
binomial parameter m. 

4. Comparative study of  RPA and FPA 

Average sorting time for RPA 

n                       p=0.2                           p=0.5                             p=0.8 
                           m                                  m                                       m 
                50      100        150         50      100        150         50     100     150                   
 
10000   .5094   .4970   .4248    .4904    .5186    .4236   .4716   .4750   .4524     
15000   .9516   1.056   .9188    1.408    1.1658   .9812  1.1374  1.066   1.159  
20000   1.872   1.866   1.873     1.903    1.878    1.606  1.611    1.656    1.753    
 
Average sorting time for FPA 
 
n                       p=0.3                         p=0.5                             p=0.8 
                           m                                  m                                       m 
                50      100        150         50      100        150       50     100     150                   
  5000   .1750   .1628    .1596   .1842    .1658    .1586    .1906  .1816   .1720 
10000   .4752   .4560    .3972   .4816    .4376    .4438    .5218   .5252   .4748   
15000    .9876   .9592   .8278   .9718     .9404   .9170   1.0874  .8778   1.006  
   
 

The results of two algorithms reveal the following facts: 

1. As far as the two algorithms are considered, the RPA  is more efficient than the FPA  in the sense that we can 
sort an array of large size in the first case than in the second. Moreover for small probability points the second 
algorithm is not valid.  

2. As for as the sorting time is considered  for same number of observations to be sorted, except for some 
incidences,  the sorting time is usually less for FPA than for RPA. The reason is that every time the sorting takes 
place   

new _sort function is called  and pivot element is selected every time, That causes increase in the sorting time. 
See the code given in the appendix. 

 3. In both the algorithms for fixed m and p, the sorting time increases with increase in the sample size which is 
otherwise also obvious. But for fixed n, the sorting time responses in a very erratic way when we change the 
value of p keeping m fixed or m is changed while keeping p fixed in RPA. On the other hand in FPA for fixed n 
and fixed m, the sorting time shows almost decreasing trend while the probability points are increased. However 
for fixed n and p, no systematic pattern is found in the time value corresponding to the change  in the value of 
m. 

5. Conclusion and Future Work 

It may be concluded here that if we want to sort an array with larger number of observations then RPA (Random 
Pivot Algorithm) should be preferred. 

 As regards the future work we may examine the algorithm with pivot element as the average of all array 
elements. 
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Appendix 

FPA  : First element as the Pivot element  algorithm Visual C++ code. 

#include<iostream.h> 

#include<stdlib.h> 

#include<sys/timeb.h> 

#include<time.h> 

#include<iomanip.h>                                      

#include<conio.h> 

void new_sort(int a[], int b[], int l, int r) 

{ 

 int pivot=a[l],low=l; 

int up=r; 

for(int i=l+1;i<=r;i++) 

{ 

if(a[i]<=pivot) 

 { 

b[low]=a[i]; 

low++; 

} 

else 

{ 

b[up]=a[i]; 

up--; 

} 

} 

b[low]=pivot; 

for( i=1;i<=r;i++) 

a[i]=b[i]; 

if(l<up-1) 

new_sort(a,b,l,up-1); 

if(up+1<r) 

new_sort(a,b,up+1,r); 

} 

void mysort(int a[],long array_size) 

{ 

clock_t start,finish; 

int *b; 

b=new int[array_size]; 

 double duration; 

start=clock(); 

new_sort(a,b,0,array_size-1); 

finish=clock(); 
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duration=(double)(finish-start)/CLOCKS_PER_SEC; 

cout.precision(4); 

cout.setf(ios::showpoint); 

cout<<"Elapsed time"<<  duration<<endl; 

} 

void main() 

{ 

 int m, s; 

   float p=.5, r; 

   int *a; 

int n; 

rand(); 

cin>>n>>m; 

a=new int[n]; 

for(int i=0;i<=n;i++) 

{ 

s=0; 

for(int j=0;j<m;j++) 

{ 

r=(float)rand()/RAND_MAX; 

if(r<p) 

++s; 

} 

*(a+i)=s; 

} 

mysort(a,n); 

getch(); 

} 

RPA:  Randomly selected element as the pivot element algorithm 

The code is same as the FPA code except for the void new_sort function which is given below. 

void new_sort(int a[], int b[], int l, int r) 

{ 

 int i; 

 int y=rand()%(r-l); 

int pivot= a[y],low=l,up=r; 

for( i=l+1;i<=r;i++) 

{ 

if(a[i]<=pivot) 

 { 

b[low]=a[i]; 

low++; 

} 

else 

{ 

b[up]=a[i]; 

up--; 

} 

} 
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b[low]=pivot; 

for( i=1;i<=r;i++) 

a[i]=b[i]; 

if(l<up-1) 

new_sort(a,b,l,up-1); 

if(up+1<r) 

new_sort(a,b,up+1,r); 

} 
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