

Parameterized Complexity: A Statistical
Approach Combining Factorial

Experiments with Principal Component
Analysis

Anchala Kumari1 and Soubhik Chakraborty2*

1University Department of Statistics, Patna University, Patna-800005, India
2Department of Applied Mathematics, BIT Mesra, Ranchi-835215, India

*Email address of corresponding author: soubhikc@yahoo.co.in (S. Chakraborty)

Abstract

The new sort developed by Sundararajan and Chakarborty (2007), a modification of Quick sort that removes the
interchanges, considers the first element of the array as pivot element. In this paper the pivot element taken is a
randomly selected element of the array. The effect of binomial parameters are examined on the average sorting
complexity using Principal Component Analysis approach. An attempt is also made to focus on a comparative
study of the two algorithms: one called the random pivot element algorithm (RPA) and the other one with first
element as the pivot element algorithm called first pivot element algorithm (FPA). The results reveal that the
RPA can sort larger number of observations than the FPA.

Keywords

Parameterized Complexity; Principal Component Analysis; random pivot; factorial experiments

1. Introduction

Parameterized complexity focuses on classifying computational problems according to their inherent difficulty
with respect to multiple parameters of the input. However, since time is both a cost and a weight, we have
ventured to work directly on program run time.

Our work is motivated by the pioneering works on computer experiment (a series of runs of a code for various
inputs) of Prof. Jerome Sacks and others (Sacks et. al. 1989). The recently published book by Chakraborty and
Sourabh (2010) describes the design and analysis of computer experiments when the response is a complexity
such as time.

 A new sorting mechanism developed by Sundararajan and Chakraborty (2007) is based on the same logic as
that of Quick sort but sorts the data without using interchanges and has the same average time complexity
(O(nlogn)) and the same worst case complexity O(n2) as Quick sort has. In the new sort originally proposed, the
pivot element taken was the first element of the array. In the present study, the pivot element is taken as a
randomly selected array element.

In the recent past much of the work is done on parameterized complexity. For a helpful review, with special
emphasis on sorting, Mahmoud (2000) may be consulted. Some of our contributions on parameterized
complexity are the recent works of Anchala and Chakraborty (2007), Anchala and Chakraborty (2008),
Prashant, Anchala and Chakraborty (2009). For the general problem of parameterized complexity theoretically,
we refer to Flum and Grohe (2006). The first systematic work on this is credited to Downey and Fellows (1999).

In this paper we have examined the parameterized complexity of the new sorting technique when the pivot
element is one of the randomly selected elements of the array generated randomly from binomial distribution.
The logic behind having binomial inputs is that any population can be easily dichotomized by some criterion.

To investigate the effect of binomial parameters on the sorting efficiency, a 3 cube factorial experiment is
employed. To investigate further the form of relationship between the sorting time and binomial parameters, the
principal component analysis is used. (Neter et. al. 1996)

From now, we shall abbreviate the sorting algorithm with pivot element randomly selected element by RPA
(Random Pivot element Algorithm) and the algorithm with pivot element the first element by FPA (First Pivot
element Algorithm).

2. RPA Analysis

To examine the effect of binomial parameters on sorting efficiency, a 3-cube factorial experiment was employed
with 3 factors each at three levels. The three factors included were the numbers to be sorted (n) and the two
parameters of binomial distribution (m and p).The levels of the factors are given below in table 1

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 166

Table 1: Factors and their levels

 Factor level
 n 10000 15000 20000
 m 100 150 200
 p 0.2 0.5 0.8

Five replications of sorting time were made for each of the 27 combinations (different factors combined at
different levels of each factor which generates 27 combinations) were obtained using Visual C++ code (see
Appendix), and average run time was evaluated thereon.
To know the singular and interaction effects of different factors, the 3-cube factorial experiment was performed
using MINITAB (13.0). The results are given in the table 2.1.

Table 2.1: Results of 3-cube factorial experiment

Sources d.f s.s m.s.s F
 Rep 4 .0003 .0001 0.36
 n 2 38.6580 19.3290 8.6E+04
 p 2 .0158 .0079 35.20
 m 2 .1050 .0520 233.21
 n*p 4 .3920 .0980 435.52
 n*m 4 .0086 .0021 9.54
 p*m 4 .2375 .0594 263.83
 n*p*m 8 .1729 .0216 96.03
 error 104 .0234 .0002
 Total 134

It is obvious that the sorting time has to increase as the number of observations to be sorted (n) is increased.
Besides n, the parameters p and m are also important factors in explaining the complexity of the algorithm, as
is clear from the above table, where m is highly significant and p is moderately significant. As regards the two
factor interaction effects, np and pm are very highly significant and nm is nearly significant. It may be argued
that the n numbers to be sorted and m (binomial parameter), when considered individually, have high
precedence in explaining sorting complexity; at the same time these two also show marked effects at different
probability points as is clear from very high values of F corresponding to np and pm interactions.
Interestingly, the two parameters of the binomial distribution also are found to interact among themselves, but
this effect is moderately significant. (F =9.54 only for pm interaction)

 We have observed that all the three factors play an important role in describing the complexity of RPA
algorithm . Now we try to examine the order of complexity explained by individual factor.

(i) n-t plot: Taking m=150 and p=.5 fixed, the values of time t were

plotted against different values of n using MINITAB statistical package . The graph obtained is given in fig. 2.1.

Fig :2.1 : n-t plot

2000010000 0

1.5

1.0

0.5

0.0

n

ti
m

e

S = 0.0354763 R-Sq = 99.7 % R-Sq(adj) = 99.6 %

 + 0.0000000 n**2

time = -0.00827 + 0.0000153 n

Regression Plot

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 167

The figure shows time as a second degree polynomial in n .As such the average time complexity of RPA sorting
algorithm is empirically of the order Oemp(n

2).

Remark: Empirical O here is the bound-estimate of a statistical bound. A statistical bound is a weight based
bound which takes all the operations collectively. A mathematical complexity bound, in contrast, is always
count based and operation specific. [Chakraborty and Sourabh (2010)].

 (ii) m-t plot and p-t plot

The plot of time verses m keeping n=15000 and p=.5 fixed is given in figure 2.2 and the plot of time verses p,
keeping n=15000 and and m=150 fixed , is given in fig 2.3

Fig 2.2 m- t graph

0 50 100 150 200 250

1.0

1.1

1.2

m

ti
m

e

Fig 2.3 p-t plot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.95

1.05

1.15

1.25

p

ti
m

e

Time versus m and time versus p graphs do not show any systematic pattern. However, time plotted against
the values of log2p gives a linear trend implying thereby that sorting efficiency of RPA is of Oemp(log2p). See
fig. 2.4.

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 168

Fig. 2.4 time verses log2p plot

-0.1 0.0 0.1 0.2 0.3

0.95

1.05

1.15

1.25

log2p

ti
m

e

But as for as m-t plot stands, any transformation made on time or m or both to find a systematic pattern
between time and m, remained unsuccessful surprisingly even though the time complexity significantly
depends on the value of m. It may be due to the non independence of error terms which is clear from the
following plots of residuals versus fitted value (fig. 2.5).

Fig 2.5 : Residuals verses fitted values

0.002 0.003 0.004 0.005 0.006

-0.005

0.000

0.005

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is e*e)

The sorting time when regressed on the three factors gives a high value of R2=97.3, indicating thereby that all
the three factors highly qualify for explaining the time complexity of the algorithm.

The regression equation is

time = - 0.788 +0.000131 n - 0.0380 p -0.000512 m

Interestingly, the distributional parameters produce negative effect on the complexity. With increase in p and
m, average RPA complexity decreases. A high value of R2 does not always mean a good fit. The high values of
interactions may cause the presence of multicollinearity in the independent variables. As such to nullify the
effect of multicollinearity and to find the exact relationship between time and the three factors, we apply the
method of Principal Component analysis .

Table 2.2 : The results of the principal component analysis

 Variable PC1 PC2 PC3

 n 1.000 0.000 0.000
 p 0.000 0.000 -1.000

 m 0.000 1.000 0.000

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 169

 Where pc1, pc2 and pc3 are the three principal components.

The regression equation is given by

time = - 0.788 + 0.0380 pc1 -0.000512 pc2 +0.000131 pc3

with a value of R2 = 97.4%

3. FPA Analysis

In this section we consider the usual New sorting technique with pivot element as the first element of the array.

The n array elements are randomly generated from B (m,p) and the three levels of input parameters are as given
below

n: 5000 10000 15000

m: 50 100 150

p: 0.3 0.5 0.8

the results 0f 3-cube factorial experiments are presented in the table 3.1.

Table 3.1 : Results of 3-cube Factorial Experiment

__
Sources d.f s.s m.s.s F
 Rep 4 .00052 .00013 0.58
 n 2 14.01733 7.00867 3.2E+04
 m 2 .08025 .04013 180.35
 p 2 .05721 .02860 128.57
 n*m 4 .03740 .00935 42.03
 n*p 4 .01230 . 00308 13.82
 m*p 4 .03043 .00761 34.19
 n*p*m 8 .07930 .00991 44.56
 error 104 .02314 .00022
 Total 134 14.33788
__

Here all the three factors considered individually, have very high impact on sorting efficiency of FPA. As far
as their interactive effects are considered , all the two factor interactions are moderately significant.

Next we study n-time, p-time , m- time plots separately.

(i) n-time graph

Fig-3.1

 0 10000 20000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n

ti
m

e
n

t imen = 0.414154 - 0.0001305 n

 + 0.0000000 n**2 - 0.0000000 n**3

S = 0.108746 R-Sq = 96.3 % R-Sq(adj) = 94.1 %

Regression Plot

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 170

Fig:3.2

 0 10000 20000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n

ti
m

e
n

t imen = 0.283245 - 0.0000465 n

 + 0.0000000 n**2

S = 0.115829 R-Sq = 95.0 % R-Sq(adj) = 93.3 %

Regression Plot

The first figure (fig. 3.1) expresses time as a polynomial of third degree in n and the second figure (fig. 3.2)
shows it as a polynomial of degree 2 in n. for both the plots R2 >=95% Thus we may conclude that average
time complexity of APF may be taken as O(n2) or O(n3) experimentally. We shall accept the former as it is a
stronger statement.

(ii) Fig. 3.3 p-time graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.45

0.55

0.65

p

ti
m

e
2

t ime2 = 0.611381 - 0.622311 p

 + 0.727078 p**2

S = 0.0294585 R-Sq = 81.5 % R-Sq(adj) = 75.3 %

Regression Plot

The above fig (fig. 3.3) shows that average time complexity can nearly be expressed as a quadratic function in p
with a value of R2=81.5%

(iii) m-time graph
Fig : 3.4

 50 150 250

0.7

0.8

0.9

1.0

m

ti
m

e
1

time1 = 1.02823 - 0.0008974 m

S = 0.0494432 R-Sq = 68.0 % R-Sq(adj) = 64.0 %

Regression Plot

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 171

Fig: 3.5

 50 150 250

0.7

0.8

0.9

1.0

m

ti
m

e
1

time1 = 0.986153 - 0.0002539 m

 - 0.0000020 m**2

S = 0.0517528 R-Sq = 69.3 % R-Sq(adj) = 60.5 %

Regression Plot

 The sorting time as a function of firsst degree or 2nd degree in m does not give a moderately good fit as the
value of R2 is only 68% in first case and 69% in 2nd case.

Let us have a look on residuals versus fitted values and normal probability plots.

Fig- 3.6: Residuals verses fitted value plot

0.8 0.9 1.0

-0.05

0.00

0.05

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is time1)

Fig-3.7 : Normal probability plot

-0.05 0.00 0.05

-1

0

1

N
or

m
al

 S
co

re

Residual

Normal Probabil ity Plot of the Residuals
(response is time1)

 Normal probability plot is a clear indication of the fact that there is almost a linear trend between sorting
time and m but on the other hand the residual verses fitted plot gives an indication that the errors terms are not
independent.

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 172

It may be argued therefore that the average time complexity of FPA in fact should be of O(m), but due to the
fact that the error terms are not independent , it depicts an approximate linear relation between time and the
binomial parameter m.

4. Comparative study of RPA and FPA

Average sorting time for RPA

n p=0.2 p=0.5 p=0.8
 m m m
 50 100 150 50 100 150 50 100 150

10000 .5094 .4970 .4248 .4904 .5186 .4236 .4716 .4750 .4524
15000 .9516 1.056 .9188 1.408 1.1658 .9812 1.1374 1.066 1.159
20000 1.872 1.866 1.873 1.903 1.878 1.606 1.611 1.656 1.753

Average sorting time for FPA

n p=0.3 p=0.5 p=0.8
 m m m
 50 100 150 50 100 150 50 100 150
 5000 .1750 .1628 .1596 .1842 .1658 .1586 .1906 .1816 .1720
10000 .4752 .4560 .3972 .4816 .4376 .4438 .5218 .5252 .4748
15000 .9876 .9592 .8278 .9718 .9404 .9170 1.0874 .8778 1.006

The results of two algorithms reveal the following facts:

1. As far as the two algorithms are considered, the RPA is more efficient than the FPA in the sense that we can
sort an array of large size in the first case than in the second. Moreover for small probability points the second
algorithm is not valid.

2. As for as the sorting time is considered for same number of observations to be sorted, except for some
incidences, the sorting time is usually less for FPA than for RPA. The reason is that every time the sorting takes
place

new _sort function is called and pivot element is selected every time, That causes increase in the sorting time.
See the code given in the appendix.

 3. In both the algorithms for fixed m and p, the sorting time increases with increase in the sample size which is
otherwise also obvious. But for fixed n, the sorting time responses in a very erratic way when we change the
value of p keeping m fixed or m is changed while keeping p fixed in RPA. On the other hand in FPA for fixed n
and fixed m, the sorting time shows almost decreasing trend while the probability points are increased. However
for fixed n and p, no systematic pattern is found in the time value corresponding to the change in the value of
m.

5. Conclusion and Future Work

It may be concluded here that if we want to sort an array with larger number of observations then RPA (Random
Pivot Algorithm) should be preferred.

 As regards the future work we may examine the algorithm with pivot element as the average of all array
elements.

References
[1] Anchala Kumari and Soubhik Chakraborty, Software Complexity: A statistical Case Study Through Insertion Sort, Applied

Mathematics and Computation, Vol. 190 (2007), p. 40-503.
[2] Anchala kumari and S.Chakarborty, A Simulation study on Quick Sort Parameterized complexity using Response Surface Design,

International Journal of Mathematical Modeling, Simulation and Applications,Vol .1 No.4, 2008, 448-458
[3] Hosam Mahmoud, Sorting: A Distribution Theory, John Wiley, 2000
[4] Kiran Kumar Sundararajan and Soubhik Chakarborty,A New sorting Algorithm, Applied Mathematics and Computation, Vol. 188(1),

2007, p1037-1041
[5] Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn, Design and Analysis of Computer Experiments, Statistical

Science, Vol. 4, No. 4, 1989, p409-423

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 173

[6] John Neter, Michael Kutner, William Wasserman and Christopher Nachtsheim, Applied Linear Statistical Models Mc Graw-
Hill/Irwin, 4th ed., 1996

[7] Jorg Flum and Martin Grohe, Parameterized Complexity Theory, Springer, 2006
[8] Prashant Kumar, Anchala Kumari and Soubhik Chakarborty, Parameterized Complexity on a new sorting algorithm : A study in

Simulation, Annals. Computer Science Series, Vol. VII, Fasc.2, 2009, 9-22
[9] Rod Downey and Michael Fellows, Parameterized Complexity, Springer, 1999
[10] Soubhik Chakraborty and Suman Kumar Sourabh, A Computer Experiment Oriented Approach to Algorithmic Complexity, Lambert

Academic Publishing, 2010

Appendix

FPA : First element as the Pivot element algorithm Visual C++ code.

#include<iostream.h>

#include<stdlib.h>

#include<sys/timeb.h>

#include<time.h>

#include<iomanip.h>

#include<conio.h>

void new_sort(int a[], int b[], int l, int r)

{

 int pivot=a[l],low=l;

int up=r;

for(int i=l+1;i<=r;i++)

{

if(a[i]<=pivot)

 {

b[low]=a[i];

low++;

}

else

{

b[up]=a[i];

up--;

}

}

b[low]=pivot;

for(i=1;i<=r;i++)

a[i]=b[i];

if(l<up-1)

new_sort(a,b,l,up-1);

if(up+1<r)

new_sort(a,b,up+1,r);

}

void mysort(int a[],long array_size)

{

clock_t start,finish;

int *b;

b=new int[array_size];

 double duration;

start=clock();

new_sort(a,b,0,array_size-1);

finish=clock();

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 174

duration=(double)(finish-start)/CLOCKS_PER_SEC;

cout.precision(4);

cout.setf(ios::showpoint);

cout<<"Elapsed time"<< duration<<endl;

}

void main()

{

 int m, s;

 float p=.5, r;

 int *a;

int n;

rand();

cin>>n>>m;

a=new int[n];

for(int i=0;i<=n;i++)

{

s=0;

for(int j=0;j<m;j++)

{

r=(float)rand()/RAND_MAX;

if(r<p)

++s;

}

*(a+i)=s;

}

mysort(a,n);

getch();

}

RPA: Randomly selected element as the pivot element algorithm

The code is same as the FPA code except for the void new_sort function which is given below.

void new_sort(int a[], int b[], int l, int r)

{

 int i;

 int y=rand()%(r-l);

int pivot= a[y],low=l,up=r;

for(i=l+1;i<=r;i++)

{

if(a[i]<=pivot)

 {

b[low]=a[i];

low++;

}

else

{

b[up]=a[i];

up--;

}

}

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 175

b[low]=pivot;

for(i=1;i<=r;i++)

a[i]=b[i];

if(l<up-1)

new_sort(a,b,l,up-1);

if(up+1<r)

new_sort(a,b,up+1,r);

}

Anchala Kumari et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 2 No.05 Sep 2013 176

	Parameterized Complexity: A StatisticalApproach Combining FactorialExperiments with Principal ComponentAnalysis
	Abstract
	Keywords
	1. Introduction
	2. RPA Analysis
	3. FPA Analysis
	4. Comparative study of RPA and FPA
	5. Conclusion and Future Work
	References
	Appendix

