
A Framework for Software Reengineering
Using Set of Software Metrics

Dr. Sumesh Sood
Department of Computer Applications

SSCMT
Amritsar, Punjab

sumesh64@gmail.com

Abstract— Software metrics support various reengineering tasks. A set of software metrics can be used to
identifying the quality problems with the current system and the prioritization of applications that are
candidates for reengineering according to their technical quality and business value. The metrics can be
used in the measurements of the costs of changes in the software, if an increase in maintainability is one of
the goals of the reengineering process. Also at the conclusion of the re-engineering effort the same metrics
can be used to identify the quality of the new system and the return on investment. The collection of
metrics on the new system can continue throughout development. To demonstrate, a metric framework
has been used for reengineering process. This framework is used in different phases of Rainfall model to
make reengineering process easy, economical and efficient. Case study of software has been undertaken
to validate this metric framework.

Keywords- Maintainability Index; Partial Reengineering; RRC; RRCM; SourceMonitor

I. INTRODUCTION

Reengineering legacy systems become a vital matter in today’s software industry. When software becomes
obsolete, some companies decide to retire the software and redevelop the whole system, while other go through a
process of upgrading the software for various reasons, to be able to resale the software again in the new market or
to use the software in the work place [15]. This process of upgradation of software is called reengineering.

Sometimes it is more cost effective not to reengineer the whole software but the part of the software. This
process is called partial reengineering. The process of partial reengineering provides an opportunity to look at the
existing design and to identify opportunities for improvements. Hence, Partial Reengineering is the process of
identifying parts of the system to be changed (candidate system), creating an abstract description of a system,
reason about a change at the higher abstract level, re-implements the candidate system and integrate the whole
system i.e. old system (excluding candidate parts) and redeveloped candidate system [16].

II. REVIEW OF LITERATURE

In early years of the information revolution the need for reengineering was not acknowledged by the wider
community, instead, attention was directed towards the new ways of creating better software.

In 1990 Chikofsky and Cross described the reengineering of software as ‘the examination and alteration of a
subject system to reconstitute it in a new form and the subsequent implementation of the new form’ [4]. The fact,
that so much attention was given to reengineering that entire businesses were caught up in the excitement and had
their entire business structure recognized according to the newly developed reengineering methodologies and
patterns that were emerged.

Soon it became apparent that the reengineering of both business and its software was not as easy as the
consultants had first believed. Over half of the reengineering processes of the time failed, mostly due to
inexperience and lack of customer’s involvement. With these failures resulting in huge lose for the companies and
soon the reengineering boom was over and so was the interest in reengineering development. This shows that
reengineering, the reorganization and redesign of a system is very important, since if these costs can be reduced,
much will be gained for software users.

In 1998 Unified Modeling Language was adopted unanimously by the membership of OMG (Object
Management Group) as a standard [6].

MORALE (Mission Oriented Architecture Legacy Evolution) is reengineering methodology developed in
Georgia Institute of Technology in 1997 by Abowd et al. The MORALE address the problem of designing and
evolving complex software systems [1].

In the late 90’s Kazman, R. [8] and Woods, S. [18] developed a conceptual “horseshoe” model that
distinguishes different levels of reengineering analysis and provides a foundation for transformations at each
level, especially for transformations at the architectural level. This model describes the rich set of technical
choices that reengineers make. However, because of its technical focus, it has not been accessible to decision
makers in a form that can assist them in deciding on complex options regarding the future of their legacy systems.

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 88

Singh and Sood (2006) in their study presented four scenarios of software reengineering [14] and with this the
need for partial software reengineering arises.

In 2007 Chiang in his work explained the connection between the stability modeling and reengineering
process for legacy system [2].

In 2009 Mishra et. al. have designed a model CORE (Component Oriented Reverse Engineering) to identify
and develop reusable software components [10]. By using the reverse engineering techniques they extracted
architectural information and services from legacy system and later on convert these services into components
that can be reusable later. But again in this paper they have explained reengineering of the software. But they
were not able to explain that why they had preferred to reengineering the components, in place of developing the
new components from scratch.

In 2010 Tucker and Simmonds presented a paper in Seventh International Conference on Information
Technology [17]. In this paper they describe a case study in perfective and adaptive reengineering. But again
there was no comparison why they choose reengineering in place of maintenance or developing software from
scratch.

In 2011 Hong Zhou proposed knowledge based software reengineering approach in the context of software
reengineering and knowledge representation [19]. It is an application of description logic and ontology to the task
of constructing computable models for the software reengineering domain. His thesis aims to improve the
traditional software reengineering methods by proposing a knowledge based software reengineering approach via
ontology and description logic.

Cholakov and Birov (2012) in their article represented a model for automated reengineering of legacy
software systems [5]. It describes in details the processes of software translation and refactoring and the degree of
automation that these processes may achieve.

From the review of literature, it can be concluded that a few studies discussed the circumstances where
reengineering is preferred over maintenance and the various parameters on the basis of which the partial
reengineering may be helpful to maintain the legacy software. So, stress to be given to study and discuss the need
of partial reengineering to reduce the effort and cost, and to increase the efficiency during reengineering of a
legacy system.

III. RESEARCH METHODOLOGY

In this paper Rainfall Model is used as candidate model. A metric framework has been proposed for
reengineering process. This framework is used in different phases of proposed model to make reengineering
process easy, economical and efficient. Case study of software, used to manage the stock of iron in an iron
refinery, has been undertaken, to validate this metric framework. After applying the metric framework on the
software, results are used to validate the techniques used in the paper. To make reengineering process automated
and easy, a tool SourceMonitor is used.

IV. METRICS USED IN REENGINEERING PROCESS

In this section, some software metrics that have proven to be particularly useful will be discussed. These
metrics fall into several categories depending on the aspects of a system they measure. The metrics presented in
Table I. are of following categories: complexity metrics, coupling metrics, cohesion metrics, cost metrics and test
metrics. Each metric is presented with its serial number, full name, abbreviation, a category (the metrics in this
paper is grouped into certain categories) and a description about the working and use of metrics.

TABLE I. METRICS FOR REENGINEERING PROCESS

S.No. Name Category Description

1. Defect Age (DA) [11] Test Defect Age (in Time) is the difference in time between the dates, a defect is detected and
the current date (if the defect is still open) or the date this defect was fixed (if the defect is
already fixed). Where ‘fixed’ means that the defect is verified and closed, not just
‘completed’ by the developer. The ‘difference in time’ can be calculated in hours or in
days. The defect age is computed as shown

 Defect Age in Time = Current Date – Defect Detection Date
2. Number Of Defects

(NOD) [9]
Test It is measure of total number of remarks found in a given time period/phase/test type that

resulted in software or documentation modifications. Only remarks that resulted in
modifying the software or the documentation are counted.

3. Time To Solve A Defect
(TSD) [9]

Test It is effort required to resolve a defect (diagnosis and correction). It provides an
indication of the maintainability of the product and can be used to estimate projected
maintenance costs. It can be calculated by Divide the number of hours spent on diagnosis
and correction by the number of defects resolved during the same period.

4. Weighted Method
Count (WMC) [3]

Complexity Measures the complexity of a class by adding up the complexities of the methods defined
in the class. Thus,

 WMC =

where Ci denotes a complexity measurement of method i.

n

i
iC

1

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 89

Complexity measurements for methods are usually given by code complexity metrics like
LOC or the McCabe cyclomatic complexity. The McCabe cyclomatic complexity
measures the complexity of some code by taking into account the decision structure of the
code, i.e. code that contains a lot of loops or if-then-else-constructs is considered more
complex.

5. Lines Of Code (LOC)
[7]

Complexity Measures the size of a piece of source code by counting its lines. Since the size of some
source code can be seen as an indicator of its complexity, LOC is used as a complexity
metric or as an indicator on how much effort required implementing that piece of code.
The line counting is usually done with respect to a certain coding standard which defines
precisely what constitutes a line of code in a particular programming language. This is
necessary for obtaining comparable, well-defined measurement results.

6. Tight Class Cohesion
(TCC) [14]

Cohesion Measures the cohesion of a class as the relative number of directly connected methods,
where methods are considered to be connected when they use at least one common
instance variable. More formally TCC for a class C is defined as follows: Let NDC = |{(m,
n) | methods m, n access a common instance variable }| be the number of connected
methods and NPC = n(n-1)/2 is the possible number of connected methods, then

TCC = NDC/NPC
7. Number of Children

(NOC)[3]
Complexity The Number of Children (NOC) represents the number of immediate subclasses

subordinated to a class in the class hierarchy.
This metric may be used in order to detect misuses of subclassing, and in many cases this
means that the class hierarchy has to be restructured at that point during the redesign
operation.

8. Coupling between
Objects (CBO) [3]

Coupling Two classes are coupled when methods declared in one class use methods or instance
variables defined by the other class. The uses relationship can go either way: both uses
and used-by relationships are taken into account, but only once.
CBO = number of classes to which a class is coupled

9. Maintainability Index
[12]

Cost The Maintainability Index is one of the most mathematically challenged metrics that has
proven to be useful. A program with a maintainability index under 65 is hard to
maintain. It is also used to calculate maintainability of the software after changes to
compare it with previous software. Maintainability of the software can be calculated by
using following Eq.

ࡵࡹ ൌ ૠ െ . ሻࢂࢋ࢜ࢇሺܖܔ െ . ࢂࢋ࢜ࢇሺࢍ′ሻ െ
 . ሻࡻࡸࢋ࢜ࢇሺܖܔ ܑܛ .൫√ܖ כ ൯ ሺሻ ࢋ࢜ࢇ

10. Defect Cost (DC) [15] Cost DC can be calculated by multiplying ratio between defect age in years and software age

in years with lines of code affected by defect and total no of lines of codes. DC is directly
proportional to defect age, as the age of defect increases, cost of DC increases, because it
may be possible that this defect is difficult to remove. Also DC is inversely proportional to
the age of software, as the software is older that means defect is not severe, as is it has not
affected the software for long time. Hence its cost decreases. Defect Age and Software
Age are taken as upper integer in years because if software is new then this ratio do not
fluctuate and remain one. DC also depends on ratio of number of lines of code affected
by defect to total number of lines of codes. If there is requirement to add other
functionality then lines affected by defect is number of statements that will be added for
increasing the functionality and can be calculated by using Fuzzy Logic Method [13].

ࡰ ൌ
ܜ܋܍܍ሺ۲ܔܑ܍۱ ܍܉ ܖܑ ሻܛܚ܉܍ܡ

܍ܚ܉ܟܜܗ܁ሺܔܑ܍۱ ܍܉ ܖܑ ሻܛܚ܉܍ܡ
ൈ

ܛ܍ܖܑۺ ܜ܋܍܍܌ ܡ܊ ܌܍ܜ܋܉܉
ܔ܉ܜܗ܂ ܛ܍ܖܑܔ ܗ ܚ܍܊ܕܝܖ

 ሺሻ

11. Fault Cost (FC) [15]

Cost FC can be calculated by calculating ratio between mean time to maintenance and time
between last two maintenance tasks. When failures become frequent above ratio
increases and hence value of FC increases. FC is taken as 0 when software is maintained
first time.

۴۱ ൌ
ܖ܉܍ۻ ܍ܕܑܜ ܗܜ ܍܋ܖ܉ܖ܍ܜܖܑ܉ܕ

܍ܕܑ܂ ܖ܍܍ܟܜ܍܊ ܜܛ܉ܔ ܗܟܜ ܍܋ܖ܉ܖ܍ܜܖܑ܉ܕ

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 90

12. Reengineering
Requirement Cost

(RCC & RRCM) [15]

Cost The value of RRC can be calculated by adding twenty times value of DC of each bug
(number of bugs can be calculated by the metric Number of Defects [79]) and FC.

۱܀܀ ൌ ۲۱ܑ

ܖ

ܑି

 ۴۱ ሺሻ

where n is number of defects.
To find whether there is requirement to maintain, reengineering or retire the system or its
modules two cases arise.
 a. Software consists of one module only.
 b. Software consists of more than one module.
a. Case 12 A:
 If the software consist of one module only then
 If RRC is less than 3.0 then there is no requirement of reengineering.
 If RRC is between 3.0 and 6.0 then there may be requirement for reengineering.
 If RRC is between 6.0 and 10.0 then there is high requirement for reengineering.
 If RRC is greater than 10.0 then reengineering cost will be very high and system

must retire and redesign using new architecture and techniques.
b. Case 12 B:
Reengineering Requirement Metric calculates whether there is requirement to maintain
the software, reengineer software or retire software. It also calculates if there is a
requirement to reengineer software then whether whole software requires reengineering
or some part of software require reengineering. In this metric four variables, efect Cost
(DC), Fault Cost (FC), Reengineering Requirement Cost (RRC) and Reengineering
Requirement Cost of Module (RRCM) are used.
If software consists of more than one module and if the value of RRC is between 3.0 and
6.0 then each module of the software is checked by adding half of RRC of whole software
to RRC of ith module to calculate Reengineering Requirement Cost of Module i (RRCM).

ܑۻ۱܀܀ ൌ

۱܀܀ ሻ ሺሻܑۻ۱ሺ܀܀

 If RRCM is less than 6.0, then there is no requirement of reengineering.
 If RRCM is between 6.0 and 10.0, then there is requirement to reengineer the

module.
 If RRCM is greater than 10.0 then reengineering cost will be very high and new

module should be redesign.

V. CASE STUDY AND RESULT ANALYSIS

 Software (Stock Management) use to manage the stock of cast iron foundry is taken as case study. Software
is developed in C++. It is used to keep track of stock of hard coke and pig iron in an iron foundry. It consists of

3 modules and has 1366 LOC. The first module main is used to manage the other 2 modules. Second module
Hard Coke is used to keep track of stock of hard coke and third module Pig Iron used to keep track of stock of
pig iron. This software is developed with little documentation and lot of extra variables and statements. So there
is requirement to look into the source code again. One more drawback of the software is that there are some
methods which are not necessary and can be merged with other methods. Hence there is need to change the
system by removing and changing some code and adding documentation. In the case study Rainfall model is
used as candidate model. In the rainfall model process of reengineering is divided into five phases. So the whole
case study is divided into five phases. In each phase some metrics are used to help the reengineering process as
shown below.

Phase I: Identification of Candidate System

The software of Stock Management consists of 1366 statements, out of which 257 needs to be changed. DC
(metric 10) can be calculated by multiplying ratio between ceiling value of defect age in years and software age in
years, with lines of code affected by defect and total no of lines of codes (Eq. 2). In this case ratio between defect
age in year and software age in year is 1 as the age of software is less than 1 year. Total lines affected by defect
are 257 and total lines of the software are 1366. When calculated, DC value of the software is 0.188 (257/1366).
Since software is changed first time, so FC (metric 11) value of the software is 0.0.

Now after putting the value of DC and FC in Eq. 3, the value of RRC (metric 12 A) is 3.76. So there is
requirement for reengineering. Since it is between 3.0 and 6.0, hence, there requirement to calculate RRCM
(metric 12 B) value of its each module independently, to find reengineering requirement of each module. After
calculating RRCM of each module, results are shown in Table II.

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 91

From the Table II., it is clear that there is requirement to maintain the main and Pig Iron module and
reengineer the Hard Coke module. Now only Hard Coke module is candidate system for software reengineering.

Phase II: Reverse Engineering

Now in the software some modules are more complex and are tightly coupled with other modules. These
modules can be called important components of the software. Reverse engineering can be started from these
components. In Hard Coke a coupling value (metric 8) of method disp() is 16, so it is a candidate for important
components because it manages a lot of other methods. To understand how the system works, emphasis should be
on understanding this component and its interactions by studying its source code. This will act as starting point
during reverse engineering process.

Phase III: Architecture Transformation or Change

After reverse engineering two methods lostfocus and lostfocus1 are combined because both the methods are
doing same work and only difference between them is list of parameters. Since, modules that are tightly coupled
(metric 8) cannot be seen as isolated parts of the system and hence, difficult to change. Changes in such parts
require a lot of work because a lot of other parts depend upon them. These modules should be carefully examined
and tested after modification of the system. So method disp(), which has high complexity (LOC is 295, calculated
using metric 5) and coupling value is examined for error and its interaction with other methods after changes are
made. Also statements, which are not affecting the software, are removed and documentation is added.

Phase IV: Development of Candidate System

Now changes are made in the design and are implemented in the coding. To make sure system does not
misbehave after the coding change sensitive parts (parts that are most likely affective by change in a system
because they depend on lot of other parts) has been identified. Method disp() has highest coupling value i.e. 15
(using metric 8) and are mainly affected by the merger of two methods. Hence during testing of the whole module
stress should be given to this method.

Phase V: Integration

During the integration, candidate system (Hard Coke module) is combined with Main and Pig Iron modules.
To differentiate Stock Management software before and after reengineering, it is called SMold (before
reengineering) and SMnew (after reengineering).

Now when the software is tested for complexity (using SourceMonitor) and maintainability (metric 9). It is
found that average complexity of the software is decreased from 4.3 to 4.1 and value of maintainability is
increased from 94.8 to 101.6.

Applying the SourceMonitor, it has been found that statements/method is decreasing from 18.8 to 16.6,
average depth is decreasing from 7 to 6 and average complexity is decreasing from 4.3 to 4.1 as shown in Table
III.

Table III. is represented in pictorial form in Fig. 1 and Fig. 2.

TABLE II. RESULT OBTAINED AFTER APPLYING EQ. 4 IN MODULES OF SOFTWARE STOCK MANAGEMENT

S. No Name LOC DC FC RCC RRCM Result

1. Main 137 .124 --- 2.48 4.36 Maintain

2. Hard Coke 668 .212 --- 4.24 6.12 Reengineer

3. Pig Iron 561 .174 --- 3.49 5.37 Maintain

TABLE III. RESULT OF TOOL SOURCEMONITOR ON SMOLD AND SMNEW

Software Statements(K)
%

Branches
Methods/class

Avg
Stmts/Method

Max
Complexity

Max
Depth

Avg
Depth

Avg
Complexity

SMold 1.458 14.5 8.69 18.8 80 7 2.53 4.3
SMnew 1.180 12.5 8.34 16.6 74 6 1.8 4.1

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 92

A very
reengineeri
Eq. 1. The

Fig. 3 and

Software

SMold
SMnew

y high level q
ing on the mai
value of maint

Fig. 4 showing

Statem

Method

Max Com

Avg

F

Cyclomatic Co

Co

Functions

61
60

quality goal fo
intainability of
tainability inde

g pictorial repr

0

ments(K)

ds/class

mplexity

g Depth

0

Functions

omplexity

omments

TABLE IV.

Vocabulary

80.8
65.4

Fig

Figure

Figure 3. Ba

or a software
f the software, m
ex of SMold an

resentation of T

20

20 40

 MAINTAINAB

y
Cycloma
Complex

18.2
13.3

gure 1. Bar Chart

 2. Line Chart fo

ar Chart for Maint

system could
maintainability

nd SMnew are s

Table IV.

40

0 60

BILITY INDEX OF SM

atic
xity

Averag

22.393
17.666

t for SMold and SM

or SMold and SMn

tainability Index o

be maintaina
y index of the s
shown in Table

60

80 100

MOLD AND SMNEW

ge LOC Co

344262 1.
666667 1.9

Mnew Software

new Software

f Stock Managem

ability. Now to
software is cal
e IV.

80

SM

SM

120

W

omments

23811095
987361869

ent

o find effect
lculated by usin

Mnew

Mold

SMnew

SMold

Maintanability
Index

94.85178628
101.6684362

of
ng

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 93

From t
decreasing
decreasing
more main

Reengi
reengineeri
of source c
the system

With th
aware of th
of develop
software pr
partial reen

[1] Abowd
Evolutio

[2] Chiang
Integrat

[3] Chidam
[4] Chikofs
[5] Cholako

the Unio
[6] Framing

www.om
[7] Humphr
[8] Kazman

Proceed
[9] Konda K
[10] Mishra

Enginee
[11] Morriso

age.htm
[12] Oman P

Softwar
[13] Putnam
[14] Singh H

Manage
[15] Singh H

251-255
[16] Sood S

Madura
[17] Tucker

Technol
[18] Woods

Internat
[19] Zhoug H

Researc

the Table IV.,
from 80.8 to
from 22.4 to

ntainable as com

neering projec
ing tasks more
code of the lega

that have been

his work the p
his technology
ing the new on
roduct and per
ngineering ther

G, Goal A, Jerdi
on, Proceeding of
CC. Software Sta

tion, Las Vegas, 13
mber SR, Kemerer
sky EJ, and Cross J
ov T, Birov D. Au
on of Bulgarian M
ghan MA. Unifie
mg.org.
rey WS. Introduct
n R, Woods SG,
dings of WCRE 98
KR. Measuring De
SK, Kushwaha DS

ering, Journal of O
on J. Software Te

ml.
P, Hagemeister J.
re, 1994; 24(3), 25

m L H, Myers W. M
H, Sood S. Reeng
ement for Econom
H, Sood S, Kaur R
5.
. Use of Metrics

ai, (2006).
DC, Simmonds D
logy, Las Vegas, N
S, Carriere SJ, K

tional Conference
H. A Knowledge

ch Laboratory, De

Figure 4. Lin

it can be seen
o 65.4, cyclom

17.6 and henc
mpare to SMold

cts can benefit
e organized and
acy system, thu
n identified by t

partial reengine
and they can g

ne. The organiz
formance of th

re is a lot of sav

ing DF, McCrack
International Conf

ability in Software
3/08/07-15/08/07;
CF. A Metrics Sui
JH. Reverse engin

utomated Software
Mathematicians, Bo
ed Modeling Lan

ion to the Persona
Carriere SJ. Requ

8, Honolulu, HI, 19
efect Removal Acc
S, Misra AK. Crea

Object technology,
sting Fundamenta

. Constructing an
51-66.
Measure for Excelle
gineering Process

mic Growth, Jalandh
R, Ratti N, Metrics

for Identifying th

M. A Case Study
Nevada, USA, Apr
Kazman R. A Sem
on Software Main
Based Reenginee
Montfort Universi

ne Chart for Mainta

n that number
matic complexi
ce, maintainab
d.

VI. C

t from metric
d focused. The
us allowing us
the measureme

eering technolo
go for partial re
zations can app
he product is in
ving of time an

REF

en M, Moore M,
ference on Softwa
e Reengineering, P
719-23.

ite for Object Orie
neering and Design

Reengineering M
orovetz, 2012; 225
nguage Specificat

al Software Process
uirements for Inte
998; 154-63.
curately, Proceedin
ating Reusable Sof
Jan-Feb 2009; 13

als, 2009. Availab

nd Testing of Pol

ence: Reliable So
and Methods: A
har, India, 2006; 3

s Framework for R

he Framework of

in Software Reeng
ril 12- April 14, 20
mantic Foundation

ntenance (ICSM-99
ering Approach vi
ity. (2011).

ainability Index of

of functions a
ity is decreasin
ility index inc

CONCLUSIONS

s. Applied w
ey provide an a
to concentrate

ents.

ogy using met
eengineering. O
ply the new tech
ncreased withou
nd efforts of the

FERENCES
Murdock JW, et

are Maintenance, B
Proceeding of IEE

ented Design. IEEE
n Recovery: A Tax

Model and Framewo
5-31.
tion Version 1.1,

s, SEI Series in So
egrating Software

ng of The Enterpr
ftware Componen
3-52.

ble from http://w

lynomials Predicti

oftware on Time, w
Study, Proceeding

392-404.
Reengineering Proc

Reengineering Pr

gineering, Proceed
010; 1107-12.
n for Architectura
9) Oxford, Englan
a Ontology and D

f Stock Manageme

are decreasing
ng from 18.2

creases from 94

with well docu
abstraction mec

our work on th

trics will be pr
Old software ar
hnology to thei
ut much cost an
e organization.

al. MORALE, M
Bari (Italy), 10/01/
EE International C

E Transactions on
xonaomy, IEEE, 7(
ork, Proceedings o

Object Managem

oftware Engineerin
Architecture and

ise Development C
nt from Object-Orie

www.softwaretesti

ing Software Mai

within Budget, Eng
gs of the conferen

cess, Punjab Univ

rocess, Submitted

ding of Seventh Int

al Reengineering
nd, 1999; 391-8.
Description Logic,

ent

from 61 to 6
to 13.3 and a

4.85 to 101.67

umented scena
chanism from t
he important o

romoted. Orga
re renovated as
ir old software
nd effort. Henc

Mission Oriented A
/97-10/03/97; 150-
Conference on Inf

Software Enginee
(1), 1999; p.15.
of the Forty First S

ment Group. 199

ng, Addison Wesle
d Reengineering M

Conference, 1998;
ented Legacy Syst

ngfundamentals.co

intainability, Jour

glewood Cliffs, NJ
nce Innovative Ap

versity Research Jo

as dissertation of

ternational Confer

and Interchange,

 Ph. D. Thesis, S

0, vocabulary
average LOC

7. So, SMnew

arios, they mak
the huge amou
r critical parts

anization will b
new one instea
product / part

ce, by promotin

Architectural Lega
-9.
formation Reuse a

ering, 1994; 20(6).

Spring Conference

98; Available fro

ey; 1997; p. 22.
Models: CORUM

; p. 35.
tem through Rever

om /2009/05/defe

rnal of Systems a

J, 1992.
pplication of IT a

ournal, 2007; 57, p

f M. Phil. to MK

rence on Informati

Proceedings of t

oftware Technolo

is
is
is

ke
unt
of

be
ad
of
ng

acy

and

 of

om:

II,

rse

ect-

and

and

pp.

KU,

ion

the

ogy

Dr. Sumesh Sood / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.02 Mar 2014 94

	A Framework for Software ReengineeringUsing Set of Software Metrics
	Abstract
	Keywords
	I. INTRODUCTION
	II. REVIEW OF LITERATURE
	III. RESEARCH METHODOLOGY
	IV. METRICS USED IN REENGINEERING PROCESS
	V. CASE STUDY AND RESULT ANALYSIS
	VI. CONCLUSIONS
	REFERENCES

