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Abstract— The Radix-2 decimation-in-time Fast Fourier Transform is the simplest and most common form 
of the Cooley–Tukey algorithm. The FFT is one of the most widely used digital signal processing algorithms. 
It is used to compute the Discrete Fourier Transform and its inverse. It is widely used in noise reduction, 
global motion estimation and orthogonal- frequency-division-multiplexing systems such as wireless LAN, 
digital video broadcasting, digital audio broadcasting. It is described as the most important numerical 
algorithm of our lifetime. The number of applications for this transform continues to grow. The Decimation-
In-Time radix-2 FFT using butterflies has designed. The butterfly operation is faster. The outputs of the 
shorter transforms are reused to compute many outputs, thus the total computational cost becomes less. The 
32 bit input FFT is synthesized using Verilog. The simulation results and the implementation details such as 
design summary, RTL schematic and others can be noticed. The design is developed using hardware 
description language VHDL / Verilog on Xilinx 14.2 xc3s500E. 
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I.  INTRODUCTION  

The Discrete Fourier transform (DFT) is obtained by decomposing a sequence of values into components of 
different frequencies. The Fast Fourier transforms (FFTs) are the efficient algorithms to compute the DFT. The 
FFT algorithms are based on the principle of decomposing the computation of DFT into sequences of smaller 
DFTs [1]. This operation is useful in many fields but computing it directly from the definition is often too slow 
to be practical. The FFT is used in various applications where the frequency-domain representation of a signal 
has to be analyzed. In the communications area, the FFT has gained attention because of its use in orthogonal 
frequency division multiplexing (OFDM) systems. For OFDM receivers, a FFT processing block is required [2]. 
Several communication systems require medium resolution (9–12 bits) analog-to-digital converters with 
bandwidths in the tens of MHz range [3]. The applications that use the FFT impose challenging specifications 
for its processing, such as small silicon area, high throughput, short processing time and reduced power 
consumption. For these applications, pipeline FFT architectures are accurate [4]. FFT has applications in mixed 
radix system, one of the popular numerical systems in which FFT numerical base or radix varies from one 
position to another position [5]. FFT is the most popular digital spectrum analysis technique [6]. 

The DFT is one of the fundamental operations in digital signal processing. The original computation of 
DFT with sample input requires complex multiplications. Cooley and Tukey first introduced the concept of FFT 
to demonstrate a significant computational reduction from to by making efficient use of symmetry and 
periodicity properties of the twiddle factors. These properties are:  

Symmetry property: ߱ே
ାே/ଶ = െ߱ே

         (1)  

Periodicity property: ߱ே
ାே = ߱ே

              (2) 

The related algorithms for the computation of the DFT are generally known as the FFTs. DFT and FFT are very 
popular signal processing tools [7]. An FFT computes the DFT and produces exactly the same result as 
evaluating the DFT definition. Computing the DFT of N points in the naive way using the definition takes 
O(N2) arithmetical operations while a FFT can compute the same DFT in only O(N log N) operations. FFT 
module can be designed for the receiver and can be used for the transmitter IFFT with external conjugation 
either in hardware or software [8]. The discrete Hartley transform (DHT) is widely used in signal and image 
processing applications. The advantage of the DHT over the DFT is that it can be used to avoid complex 
operations when the input sequence is real. The forward and inverse DHTs differ from each other in their form 
only in the scaling factor [9]. The decimation in-time (DIT) and the decimation in- frequency (DIF) algorithms 
are the typical forms of the FFT algorithm. 
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Figure 2. Simulation Output of 32 Bit Input DIT Radix-2 FFT 

      The implementation results will be obtained in the synthesis of 32 bit radix-2 DIT FFT. The implementation 
details include the design summary from which the logic utilization is obtained, floor planning, I/O planning and 
timing constraints of clock domain, inputs, and outputs are shown below. The device xc3s500E design summary 
of 32 bit radix-2 DIT FFT is shown in Figure 3. The number of logics used in the design is obtained from the 
device utilization summary. The design can be done in this device since the percentage of logic utilization 
comes within 100%. The logic utilization details of 32 bit shows that the number of slices is 8%, slice FF is 6%, 
4 input LUTs is 7%, bonded IOBs is 15%, BRAMs is 60%,18*18 SIOs is 80% and Gclks is 4%.  

 
Figure 3. Design Summary of 32 Bit Input DIT Radix-2 FFT 

    The timing constraints used in the user constraints while synthesizing 32 bit radix-2 DIT FFT is shown 
below. This includes timing of clock domain, inputs and outputs. The timing constraint of clock domain is 
shown in Figure 4 in which the clock pulse is given as the input. The timing constraint of inputs is shown in 
Figure 5. The timing constraint of output is shown in Figure 6. 

                 
                     Figure 4. Clock Domain Timing Constraint                                   Figure 5.  Input Timing Constraint 
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Figure 6. Output Timing Constraint 

      The floorplanning is shown in Figure 7. Floorplanning is the process of identifying structures that are placed 
close together, and allocating space for them so as to meet the conflicting goals of available space (cost of the 
chip), required performance, and desired to have everything close to everything else. The goals of floorplanning 
are to increase density, routability, or performance and to reduce route delays for selected logic by suggesting a 
better placement. Floorplanning allows you to choose the best grouping and connectivity of logic in a design 
and manually place blocks of logic in an FPGA device. Even a good floorplan does not guarantee that a design 
will meet timing. A bad floorplan will lead to waste-age of die area and routing congestion. 

 
Figure 7.  Floor Planning 

    The I/O pin planning or plan ahead of 32 bit radix-2 DIT FFT is shown in Figure 8. Input and output (I/O) 
signals can be assigned to package pins in the design. This process launches the PlanAhead™ software for 
FPGA designs and Pinout and Area Constraints Editor for CPLD designs. This process operates on the top 
module in the design before the design is synthesized. This allows assigning input and output signals to package 
pins before the underlying logic in the design has been developed. Constraints are saved to a user constraints file 
User Constraints File. You can create this file prior to running this process. The PlanAhead software extracts the 
top-level I/O port information from the associated HDL source files. Complicated design constraints are 
generated in practice to guide the I/O placement. Performing I/O pin assignment for FPGA devices describes the 
procedure for creating and assigning I/O ports to physical package pins. 
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Figure 8. I/O Pin Planning 

IV. CONCLUSION 

In this work, the design of 32 bit radix-2 DIT FFT is implemented in the FPGA Spartan 3E. The total 
computational cost is less as the shorter ones are reused to compute many outputs. The simulation of 32 bit radix-
2 FFT is done and outputs are obtained in Isim window. The design summary describes the logic utilization 
details which shows that the number of slices is 8%, slice FF is 6%, 4 input LUTs is 7%, bonded IOBs is 15%, 
BRAMs is 60%,18*18 SIOs is 80% and Gclks is 4%. The logic utilization of xc3s500E for implementing DIT 
radix-2 FFT increases as the number of bits for processing increases. The implementation details are noticed after 
synthesizing using the Xilinx 14.2. The timing constraints of clock domain input and output, floorplanning and 
I/O planning are noticed.  
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