
Music Inspired HS Algorithm for
determining Software Design Patterns

A.V.Sriharsha
Research Scholar, Department of CSE
S V University College of Engineering

Tirupati, India
avsreeharsha@gmail.com

Dr. A. Rama Mohan Reddy
Professor, Department of CSE

S V University College of Engineering
Tirupati, India

ramamohansvu@yahoo.com

Abstract— Harmony Search (HS) is a phenomenon-mimicking algorithm a metaheuristic inspired by the
improvisation process of musicians proposed by Zong Woo Geem (2001). Multiobjective, Multiconstratined
optimization for determining the Global Optima from several Local Optima is challenging and toughest task,
which can be strategically solved by HS metaheuristic algorithm. The capability of the improvisation process
to find the optimal solution in the HS metaheuristic is used for determining the software design patterns
based on their characteristic weights deduced using many parametric and non-parametric methods. In this
paper we attempt to design a framework for determining the optimal design pattern as the solution for the
problem narrated in the form of pattern stories. We have evaluated for some complex case studies and the
results are affirmative for the statement declaration.

Keywords- design pattern discovery, optimal design patterns, formal design patterns, harmony search.

I. INTRODUCTION

Problems in the real world are complex in their nature, and software development is not a compromise for real
big enterprises that host multiple facilities with a great database, network backup emerging as a distributed
environment. Such of those are not built over night, or by a wizard style of programming. They need keen
understanding of the problem and a strategic design and amply manned teams for coding, testing and simulation.
The prototype of such software is the mind-coded tools that gain acceptance of the users’ folk and the developers’
ambitions. The great software architecture will be the backbone for such assignment, where tricky software
engineering techniques are not sufficient. However, software engineering breathes out into a giant methodology
of software architecture building, where no one believes that architecture is built. For such problems where
architecture needs to be built there is a need of sketching and design work to be done. The design is modularized
and distributed to the coders for module development and with many levels of approvals they are united to show
up as big software. The problem lies when the need of doing such a job for so many areas, domains and
applications.

II. DESIGN AS THE EVOLUTION OF MODELS

All architects, indeed all designers, manipulate models of the system. These models become successively less
abstract as design progresses. In Hatley/Pirbhai the reduction of abstraction is from behavioral model to
technology-specific behavioral model to architecture model. There is also hierarchical decomposition within each
component. The technology of modules is indeterminate at the top level, and becomes technology-specific as the
hierarchy develops. The Q2FD performance modeling technique shows stepwise refinement of customer
objectives into engineering parameters. As the QFD chain continues, the engineering parameters get closer to
implementation until; ultimately, they may represent machine settings on the factory floor. Likewise, the structure
of integrated models in software and manufacturing systems follows the same logic or progression.

Many heuristics evolved to compose a design of a pattern that comes with calculating the relationships among
the components of fragment of software. The criteria for evaluating a design of a recurring problem of the real
world progresses or evolves in the same manner as design models. In evaluation, the desirable progression is from
general to system-specific to quantitative. For heuristics, the desirable progression is from descriptive and
prescriptive qualitative to domain-specific quantitative and rational metrics.

Design patterns are a technique for documenting solutions to recurring design problems and for sharing design
expertise in an application-independent fashion. But directly applying design patterns for the development
platform is a complicated task and only the programming language experts have to be educated about the
applications of design patterns. All designers need not be programmers of a language or programmers never go

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 230

into the strategic concerns of design. Thus a software system development needs to be bothered about the design
complexity rather the development complexity.

Different approaches, exploiting software metrics, were used in previous works to automatically detect design
concepts and operate clones in large software systems.

Formalizing the design pattern mechanisms have evolved to put any design pattern into practice, Christopher
Alexander has explained the first forms of design patterns, then clarified with illustrative diagrams and further for
software design patterns specific code examples. This format is very informal and hence brings such ambiguity
that it is often a matter of dispute whether an implementation conforms to a pattern or not. Furthermore, it is now
widely recognized that a poor presentation of patterns can lead to poor system quality and can actually impede
maintenance and evolution. The pattern story of the given software design problem is described formally using
the mathematical specifications rather with an illustrated sets of diagrams, where the formalization helps to
understand the functional and non-functional parameters of the system.

In this paper we are going to discuss the formal specification of the design problems and as the input the
optimization problem to find the optimal design solution, all using the formal specifications of design patterns
and harmony search algorithm.

III. METRICS USED FOR DRAWING WEIGHTS FOR PATTERNS

A managerial view of software has been in vogue to understand the modularity and weightage metrics. Most
of the models of this view are the familiar tools of project management. In addition, management-related metrics
that can be calculated from other models are invaluable in efforts to create an integrated set of models.

Some examples include:

1) The waterfall and spiral system development meta-models; they are the templates on which
project-specific plans are built.

2) PERT/CPM and related task and scheduling dependency charts.

3) Cost and progress accounting methods.

4) Predictive cost and schedule metrics calculable from physical and behavioral models.

5) Design or specification time quality metrics — defect counts, post-simulation design changes, rate
of design changes after each review.

The civil architect will have enough details for proven cost models, and the programmer can measure
execution speed, compiled size, behavioral compliance, and invoke quantitative software quality metrics.

Metrics in software engineering are used to evaluate the weight of the developed and running software. They
are used to evaluate the volume of the software with various complexity metrics, in terms of LOC, Number of
modules and rates of coupling and cohesion. Chidamber & Kemerrer have worked out an agenda for the
solutions for determining metrics. Ever since the software have been evolved into Object Orientation the need
for measuring the voluminosity of the software in terms of objects, coupling, cohesion and their desiderata of
object orientation has become ample importance in the software engineering. Though many programming
paradigms have evolved into existence object orientation has become fundamental phenomena for major number
of programming languages for their successful domain specific application development tasks.

The formal values for the design patterns had been deduced using the principles of metrics by Quantitative
Metrics of Object Oriented Design (QMOOD). This uses evolutionary computation techniques for validating the
classes and components, where the same is used to validate the formal values of the design patterns. The formal
values calculated for the design patterns when they stay vis-á-vis in the libraries have formal values defined as
template formal values, the formal values calculated for the design patterns when they are implemented in the
application have formal values as implementation oriented formal values. The design patterns thus have two
categories of values one is the template formal values and implementation formal values. The implementation
formal values are always more than the template formal values. We would consider the template formal values
as the minimum weight given to the design pattern, which is used while searching the design patterns from the
library for the user inputs. A design pattern is a collection of well aligned classes, interfaces and polymorphic
methods and some ancestors. Each pattern can be visualized as a graph that can be used to analyze specific
characteristics of a target software design, such as the number of disjoint inheritance hierarchies. Each metric
returns a floating-point number, and those numbers are used as input for formulas that evaluate complex quality
characteristics. These characteristics and the formulas that are used to computer them are shown in the table
follows:

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 231

Descirption Name of the Metric

The number of classes in the software
design.

(DISC) Design size in Classes

The number of class hierarchies in the
software design

(NOH) Number of hierarchies

The average number of other classes that a
class inherits

(NOA) Number of ancestors

The number of methods in the software
design that exhibit polymorphic behavior

(NOPM) Number of polymorphic
methods

The average number of public methods in a
class

(CIS) Class interface size

Counts of the number of classes that a
given class is directly related to by
attribute declaration or method return type.

(DCC) Direct class coupling

The relatedness among methods of a class,
computed using the summation of the
intersection of parameters of a method
with the maximum independent set of all
parameter types in the class.

(CAM) Cohesion among
methods of class

The average number of methods in a class. (NOM) Number of methods
The ratio of non-public (i.e., private or
protected) attributes to the total number of
attributes declared in the class. This is
interpreted as the average of the ratios for
all classes in the software design.

(DAM) Data access metric

The average number of data declarations
(e.g., fields) in a class whose data types are
user-defined classes. We exclude classes
that are part of the Java standard library
and language.

(MOA) Measure of aggregation

The ratio of the total number of methods
inherited by a class to the number of
methods that are accessible by member
methods of that class.

(MFA) Measures of functional
abstraction

Table 1: Describing the Nature of Parametric Weights of OO Design.

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 232

Fig 1. A Survey Template to acquire the parametric weights of the design patterns

In the above table for each pattern of GoF, the functional and non-functional specifications are weighed and
the optimal calculable weight that is the template formal value is calculated, by using QMOOD metrics.
Approximate values of certain number of observations of a group of designers have to be attributed here to
justify the weights (optimal calculable) here:

The Decorator design pattern:

From the intent of the design pattern Decorator, the following are the intents apprehended:

a) Attaching the responsibilities to the external objects.

b) Recursive-wrapping and support client specified embellishment.

c) Wrapping as a box (a kind of encapsulation and giving protection to the class API).

For a typical and standard application of the Decorator pattern in a word processor kind of application the
following metrics are drawn.

Max Min Name of the Metric
5 3 (DISC) Design size in Classes
2 1 (NOH) Number of hierarchies
2 1 (NOA) Number of ancestors
9 3 (NOPM) Number of polymorphic methods
4 2 (CIS) Class interface size
4 2 (DCC) Direct class coupling

10 5 (CAM) Cohesion among methods of class
26 6 (NOM) Number of methods

20/48 5/12 (DAM) Data access metric
500 50 (MOA) Measure of aggregation

55/170 16/50 (MFA) Measures of functional abstraction

Table 2: The parametric weights of Decorator Pattern application on Laboratory Survey.

An example of complex design pattern as template needed to be addressed here: Taking an example for the
proof of the algorithmic approach a Decorator pattern is considered. The drawing of the Decorator pattern is
advocated to apply for the programming problem and the OO weights of the pattern are evaluated. The design
pattern is represented as a tuple of classes and relations among classes. When examining potential pattern
instances, to avoid combinatorial explosion in checking all possible class combinations, OO software metrics
are used to determine the pattern constituent candidate sets.

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 233

Using the above metric the optimal calculable weight for each design pattern that is template formal values
are deduced. Parameters that determine the weights are drawn from the procedures of QMOOD and AOL using
AST.

IV. HARMONY SEARCH

A meta-heuristic algorithm, that mimics the improvisation process of a jazz music player, has been
prominent since a decade and it is named harmony search. This has acquired wide popularity in optimization
problems, representing several advantages with respect to the traditional optimization techniques such as the
following:

a) HS algorithm imposes fewer mathematical requirements and does not require initial value settings
of the decision variables.

b) As the HS algorithm uses stochastic random searches, derivative information is also unnecessary.

c) The HS algorithm generates a new vector, after considering all of the existing vectors, whereas the
genetic algorithm (GA) only considers the two parent vectors.

These features of HS algorithm improve flexibility and made it indispensable for optimization problems and
produce better solutions.

To solve actual problems in an industry setting, a software engineering or a team of engineers must
incorporate a development strategy that encompasses the process, methods and tools layers and the generic
phases. This strategy is often referred to as a process model or software engineering paradigm. A process model
for software engineering is chosen based on the nature of the project and application, the methods and tools to
be used and the controls and deliverables that are required. Several process models anguished on the
development paradigms and can only had successfully delivered legacy systems, which are less compatible and
have a monolithic designs. This is overcome by means of flexible design mechanism, using design patterns.
Using design patterns a problem can be designed very easily within a short time to cover all aspects.

To explain in detail the Harmony Search, first the improvisation process of a skilled musician is idealized.
When musician is improvising, has three possible choices: (1) play any famous piece of music (a series of
pitches in harmony) exactly from musician’s memory; (2) play something similar to a known piece (thus
adjusting the pitch slightly); or (3) compose new or random notes. Zong Woo Geem et al. formalized these three
options into quantitative optimization process in 2001, and the three corresponding components become: usage
of harmony memory, pitch adjusting, and randomization [1]. As similar to the (GA) genetic algorithms the
choice of the best-fit, the usage of harmony memory is importantly noticed. That ensures, the best harmonies
will be carried over to the new harmony memory. In order to use this memory more effectively, it is typically
assigned as a parameter raccept[0,1] , called harmony memory accepting or considering rate. If this rate is too
low, only few best harmonies are selected and it may converge too slowly. If this rate is extremely high (near 1),
almost all the harmonies are used in the harmony memory, then other harmonies are not explored well, leading
to potentially wrong solutions. Therefore, typically, we use raccept = 0.7 ~ 0.95.

The second component is the pitch adjustment determined by a pitch bandwidth brange and a pitch adjusting
rate rpa. Though in music, pitch adjustment means to change the frequencies, it corresponds to generate a slightly
different solution in the Harmony Search algorithm [1]. In theory, the pitch can be adjusted linearly or
nonlinearly, but in practice, linear adjustment is used. So we have

xnew= xold + brange* ε (1)

where xold is the existing pitch or solution from the harmony memory, and xnew is the new pitch after the pitch
adjusting action. This essentially produces a new solution around the existing quality solution by varying the
pitch slightly by a small random amount [1,2]. Here e is a random number generator in the range of [-1,1]. Pitch
adjustment is similar to the mutation operator in genetic algorithms. We can assign a pitch-adjusting rate (rpa) to
control the degree of the adjustment. A low pitch adjusting rate with a narrow bandwidth can slow down the
convergence of HS because the limitation in the exploration of only a small subspace of the whole search space.
On the other hand, a very high pitch-adjusting rate with a wide bandwidth may cause the solution to scatter
around some potential optima as in a random search. Thus, we usually use rpa=0.1 ~0.5 in most applications.

Harmony Search

begin

Objective function f(x), x=(x1,x2, …,xd)T

Generate initial harmonics (real number arrays)

Define pitch adjusting rate (rpa), pitch limits and bandwidth

Define harmony memory accepting rate (raccept)

while (t<Max number of iterations)

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 234

Generate new harmonics by accepting best harmonics

Adjust pitch to get new harmonics (solutions)

if (rand>raccept), choose an existing harmonic randomly

else if (rand>rpa), adjust the pitch randomly within limits

else generate new harmonics via randomization

end if

Accept the new harmonics (solutions) if better

end while

Find the current best solutions

end

Algorithm 1: Pseudo code of the Harmony Search algorithm.

The third component is the randomization, which is to increase the diversity of the solutions. Although adjusting
pitch has a similar role, but it is limited to certain local pitch adjustment and thus corresponds to a local search.
The use of randomization can drive the system further to explore various diverse solutions so as to find the
global optimality.

The three components in harmony search can be summarized as the pseudo code shown in Algorithm. 1. In this
pseudo code, we can see that the probability of randomization is

Prandom
 =1−r accept, (2)

and the actual probability of adjusting pitches is

Ppitch =raccept *rpa. (3)

V. HARMONY SEARCH FOR SOFTWARE ARCHITECTURE

Software Architecture problems that include reusing the components that are already implemented for
applications, reuse of the design of one application into another, where there is a library of generic design
patterns needs meticulous decision making which challenges about fitment and accuracy. Such problems, when
they are solved, should project the finalized results for the developer to attain product development as in a final
state. Using conventional selection methods, it is very difficult to ascertain the selection is final and best suited,
for which that includes working out on so many parametric qualities. The best suited design is a dimensional
pattern where the design pattern or software component is generically designed and be used for generalized
application development. Thus, the selected stake and the inputs for selection are multi parametric; so a problem
of multi-variable, multi-objective optimization persists.

Harmony Search is a strategic, meta-heuristic and algorithm-based-approach for engineering optimization
problems with continuous design variables, especially they are much suitable for such software design
problems. Quality and optimality of resulting design patterns or components is assured greatly with the
application of Harmony Search strategic algorithm.

A. Implementation of Harmony Search for selection of a Design Pattern

Separating a software system into concerns is one way to deal with the increasing complexity of
constructing large systems. However, not all concerns can e easily be modularized. Some concerns crosscut
others. A crosscutting concern is one that is scattered throughout a system and is tangled with other core
application concerns. A pattern story describes the application of patterns to a specific design.

Harmony Search Algorithm for Selection of Optimal Parametric Weights for deciding the design pattern.

The steps in the procedure of classical harmony search algorithm are as follows:

Step 1: Initialize the problem and algorithm parameters. The optimization problem is specified as
follows:

Minimize f (x) such that xi  Xi, i = 1, 2, · · · , N,

where f (x) is an objective function; x is the set of each decision variable xi; N is the number of
decision variables, Xi is the set of the possible range of values for each decision variable, Xi : x

L
i

≤ Xi ≤ xUi . The HS algorithm parameters are also specified in this step. These are the Harmony
Memory Size (HMS), or the number of solution vectors in the harmony memory; Harmony
Memory Considering Rate (HMCR); Pitch Adjusting Rate (PAR); and the number of
improvisations (Tmax), or stopping criterion.

Step 2: Initialize the harmony memory. The HM matrix is filled with as many randomly generated
solution vectors in possible range of decision variables, such as:

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 235

HMSjxxrandxxjHM LULj ,...,2,1=),(×()+=:),(

Step 3: Improvise a new harmony. Generating a new harmony is called ‘improvisation’. A new
harmony vector, x′ = (x′1, x ′2, · · · , x′N), is generated based on three rules: (1) Memory
consideration, (2) Pitch adjustment and (3) Random selection. The procedure works as follows:

For each i  [1,2, …, N] do
 If rand() <> HMCR

),...,2,1=(=′ HMSjxx j
ii // memory consideration

 If rand() <> PAR

]),,′min[max(=′

×±′=′
U
i

L
iii

ii

xxxx

bwrxx
 // pitch adjustment &

 truncation processing
 End
 Else

)(×()+=′ L
i

U
i

L
ii xxrandxx // random selection

 End
End

Step 4: Update harmony memory. If the new harmony vector, x′= (x′1, x′2, · · · , x′N) is better than the
worst harmony in the HM, judged in terms of the objective function value, the new harmony is
included in the HM and the existing worst harmony is excluded from the HM.

Step 5: Check stopping criterion. If the stopping criterion (maximum number of improvisations) is
satisfied, computation is terminated. Otherwise, Steps 3 and 4 are repeated.

B. The harmony search is applied into the software problem:

Decision Variables in the HS Optimization are the Design Patterns what are to be chosen. Value Range of
HSO algorithm is the volume/level of application of DP in the design. Solution Vector of HSO algorithm is the
boundaries of applications of a DP in the design. Objective Function of HSO algorithm is the fine aesthetics of
the DP in the current problem of design. Iterations of HSO algorithm is the practice on which the DP will adapt
more suitably to the application. Memory Matrix of HSO algorithm represents experiences of applications of DP
in the software development scenarios.

When the HS algorithm is implemented in Java (courtesy to Mohammed Fesanghary) the code reinstates the
variables as follows: The key requirements of HS algorithm are; Harmony Memory Size (HMS), which includes
the entropy of weights of the characteristics of the classes in the design pattern, Harmony Memory Considreation
Rate (HMCR) is the rate where HS picks one value randomly from the musician’s memory (HMS) 0 <= HMCR
<= 1. 1- HMCR is the rate where HS picks one value randomly from total value range. The entropy of weights of
each characteristic is prepared in a table for all the 23 GoF Patterns. Pitch Adjustment Ratio (PAR) is the rate
where HS tweaks the value which was originally picked from memory, 1-PAR is the rate where HS keeps the
original value obtained from memory. The selected group or range of weights from the weights of the entropy of
characteristics is used to tune the selection of the pattern according to the size of the problem narrated in the
pattern story. Number of Iterations (NI), is that the algorithm is iterated on the values to obtain the Local Optima
of the weights of the characteristics and further the Global Optima of the desired design pattern. Fret Width is
arbitrary length for the continuous variable only, which is also called (BW) band width. Fret is where the ridges
on a stringed musical instrument to allow the tunes of the instrument to play. Pitch is the rate of vibrations in a
tune. The Band Width determines the volume of the application of the design pattern to be applied for the
problem. Finally the cadence is attained (cadenza) by the algorithm making a suggestion of the more suitability of
the design pattern for the problem narrated in the pattern story.

I. EXPERIMENTAL RESULTS

The classical Harmony Search algorithm has been carried out in Java, with the specified parameters. The
weights of the design pattern are predetermined for the known characteristics. The pattern Story is also
formalized and weights for the component classes were built. The weights of the component classes in the pattern
story become the question for identifying the desired design pattern. These weights are the used to tune the BW
and PAR of the HS algorithm and it is implemented iteratively. Many observations are made on the output of the
HS algorithm and the mean of the output weight is used to determine the weights of the design pattern.
Assigning/designating the weights to the variables using Likert scale method is performed on the eights of the

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 236

pattern story. We have experimented four Pattern Stories of a Text Editor / Word Processor and came out the
compatible design patterns of Decorator, Adapter and Façade patterns.

4.323968887329102 1.1349130868911743 1.0410350561141968 8.640802383422852
2.8220672607421875 2.9693503379821777 5.849714279174805 12.500911712646484
171.13710021972656 17.96278667449951

4.104762077331543 1.7971773147583008 1.971657633781433 4.510588645935059
3.0633492469787598 3.7091116905212402 7.056185722351074 19.887590408325195
274.80279541015625 15.447534918785095

3.8744843006134033 1.3624505996704102 1.3432064056396484 6.144593715667725
2.3172690868377686 3.457193374633789 5.991699695587158 17.424198150634766 264.8871765136719
15.042004108428955

4.925594806671143 1.973921298980713 1.4136511087417603 7.418281078338623
3.0327324867248535 2.208566188812256 8.379963874816895 15.341063499450684
153.55018615722656 18.764180779457092

4.733988285064697 1.4698853492736816 1.9643923044204712 6.246506690979004
2.665968894958496 3.162504196166992 7.11160945892334 23.451099395751953 411.63616943359375
17.08074152469635

Execution time : 0.733 seconds

best :10.026798338763362

 3.0009925365448 1.0026499032974243 1.000622272491455 3.0173819065093994 2.0051517199202826
2.2921719905926183 6.134219301562537 8.345452308654785 249.5384079426624

The observation drawn from the example of using weights of the decorator pattern, where the data shows the
quantum of the limits of the properties to be used in the design pattern decorator for the application.

II. CONCLUSIONS

Design patterns are a technique for documenting solutions to recurring design problems, calculating the
weights of the characteristics of the patterns and determined them as the desired ones for solving the problem is a
challenging task. Various opinions come into light for which the design patterns are applied for the size of the
problem and the domain. Formalization mechanism for the design patterns may be improved to an API level to
directly know their characteristics and easy determination. The existing software tools which have done
tremendous research made the design patterns complicated by applying constraints such as language, application
thought and other perspectives. Unlike, the GoF patterns can be understood in plain to an API level and can be
drawn into the programming environments.

REFERENCES
[1] Zong Woo Geem, Music-Inspired Harmony Search Algorithm, © 2009 Springer-Verlag Berlin Heidelberg. ISBN 978-3-642-00184-0.
[2] Parikshit Yadav, Rajesh Kumar, S.K. Panda, C.S. Chang, An Intelligent Tuned Harmony Search algorithm for optimization,

Information Sciences 196 (2012) 47–72, © 2012 Elsevier. doi:10.1016/j.ins.2011.12.035.
[3] Dennis Weyland, A Rigorous Analysis of the Harmony Search Algorithm - How the Research Community can be misled by a novel

Methodology, International Journal of Applied Metaheuristic Computing, volume 1-2, April-June 2010, pages 50-60.
[4] Omran, M. and Mahdavi, M. (2008). Global-best harmony search. Applied Mathematics and Computation, 198(2):643-656.
[5] Uwe Zdun and Paris Avgeriou, A catalog of architectural primitives for modeling architectural patterns, Information and Software

Technology 50 (2008) 1003–1034, © 2008 Elsevier.
[6] Donald Metzler and Hugo Zaragoza, Semi-Parametric and Non-parametric Term Weighting for Information Retrieval, Yahoo!

Research, © 2010 Yahoo Inc.
[7] G Antoniol, G.Casazza, M. Di Penta, R. Fuitem, Object Oriented Design Pattern Recovery, The Journal of Systems Software, Vol 59.

2001, 181-1196. © 2001 Elsevier.
[8] Frank Buschmann, Pattern Oriented Software Architectures, © 2001 Reprint, John Wiley & Sons, Germany.
[9] Christopher G. Lasater, Design Patterns, © 2007, Wordware Publishing, Inc.
[10] Dan Lockton, David Harrison, Neville A. Stanton, Design with Intent, Equifine Windsor, Berkshire, UK, © 2010.
[11] Chris Ford, Ido Gileadi, Sanjiv Purba, Mike Moerman, Patterns for Performance and Operability: Building and Testing Enterprise

Software, Auerbach Group, © 2008 by Taylor & Francis Group, LLC.
[12] Richard P. Gabriel, Patterns of Software: Tales from the Software Community, New York, Oxford, © 1996, Oxford University Press.

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 237

AUTHORS PROFILE

Dr. A. Rama Mohan Reddy is currently working as Professor, Department of CSE, SVU
College of Engineering, S V University, Tirupati, A.P. He has completed his B.Tech from
JNT University, Anantapur and M.Tech from NIT, Warangal. He has received his Ph.D. from
SV University in Software Architecture. His other areas of interests include Data Mining and
Object Oriented Analysis & Design.

A.V. Sriharsha is B.Tech in Computer Science & Engineering from Andhra University and
M.Tech in Information Technology from Sathyabhama University, Chennai. He is pursuing
PhD under the esteemed guidance of Prof. A.Rama Mohan Reddy, Department of CSE, SVU
College of Engineering (Autonomous), S.V.University, Tirupati, A.P. His main research
interest includes Data Mining, Information Retrieval, Database Management Systems and
Knowledge-based Software Architectures.

A.V.Sriharsha et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 3 No.05 Sep 2014 238

	Music Inspired HS Algorithm fordetermining Software Design Patterns
	Abstract
	Keywords
	I. INTRODUCTION
	II. DESIGN AS THE EVOLUTION OF MODELS
	III. METRICS USED FOR DRAWING WEIGHTS FOR PATTERNS
	IV. HARMONY SEARCH
	V. HARMONY SEARCH FOR SOFTWARE ARCHITECTURE
	I. EXPERIMENTAL RESULTS
	II. CONCLUSIONS
	REFERENCES
	AUTHORS PROFILE

