JV N Lakshmi et al. / International Journal of Computer Science Engineering (IJCSE)

An Analysis on efficient column based
storage structures in Big Data Analytics

JV N Lakshmi*
Research Scholar
Department of Research in Computer Science
SCSVMV University, Kanchipuram — INDIA
jlakshmi.research@gmail.com

Dr. Ananthi Sheshasayee
Research Supervisor
Department of Computer Science & Research
Quaid — E — Millath Govt College for Women
Chennai — INDIA
ananthi.research@gmail.com

Abstract

Map Reduce-based data warehouse systems are playing important roles of supporting big data analytics to
understand quickly the dynamics of user behavior trends and their needs in typical Web service providers and
social network sites (e.g., Facebook). In such a system, the data placement structure is a critical factor that can
affect the warehouse performance in a fundamental way. Based on analysis a system requires the data placement
structure characterized as: (1) fast data loading, (2) highly efficient storage space utilization, and (3) strong
adaptivity to highly dynamic workload patterns. This paper examines different table structures implemented on
HDFS using Map Reduce model such as Table Placement Method, SLCG store, RC File, Hbase, Trojan Layout
and Column store. Observation analyses that column based stores proves to be more sophisticated compared to
row store.

Key Words — Column Store, Data Analytics, HBase, Map Reduce, Hadoop, RC File, Row Store, Trojan
Layout

1. Introduction

This is a data explosion era, where data is increasing exponentially. Such massive amount of data is called Big
Data. The data so produced needs certain analysis, processing data management and huge storage capacity [10].
Analyzing terabytes of data is a common task for many enterprises such as Social networking sites, Government
organizations, Enterprises and Technical agencies. To manage this trend, Map Reduce is quickly becoming the
de facto standard for large-scale analysis in industry [1].

These Map Reduce-based warehouse systems cannot directly control storage disks in clusters. Instead, they have
to utilize the cluster-level distributed file system (e.g. HDFS, the Hadoop Distributed File System) to store a
huge amount of table data [9]. Therefore, a serious challenge in building such a system is to find an efficient
data placement structure that determines how to organize table data in the underlying HDFS [14].

Offsat 0 Offaet & Dftsard

Raw Header Columni | Columnz |—7
C:.ﬁ-} 1 iE Siifant 20
|_ Row Hoader I Column 1 | Column 2 | =

Oftmat 28 [Otmet 32

! J Column 1 | Column 2 j

Fig 1: AN EXAMPLE OF ROW-STORE Src: [7]

The traditional data warehousing system uses a row — store structure which dominates in conventional one-size
fits- all database systems [16]. With this structure, relational records are organized in an N-array storage model
[8]. All fields of one record are padded one by one in the order of their occurrences. Records are placed
contiguously in a disk page.

In this paper section 2 discuss on related literature. Section 3 talks about various Column based table structures.
The section 4 examines comparison with row based structure with column oriented structures. Section 5
concludes.

ISSN : 2319-7323 Vol. 4 No.01 Jan 2015 26

JV N Lakshmi et al. / International Journal of Computer Science Engineering (IJCSE)

2. Related Literature

The data load time overhead of Trojan HDFS is negligible. Furthermore, the one-time data load cost of Trojan
HDFS pays of as recurring speed-ups over several Map Reduce jobs. Trojan Layouts can create a different
layout per data block replica still table structure is not efficient when compared to column stores.

A column store heavily employs compression, though only Column Store offers compressed execution. C-Store
follows the idea of storing data multiple times in projections with a different sort order. In table structure
efficiency and data stores have a high feasibility.

RCFile uses two sections to store the real data of each column and the metadata about this column (mainly the
length of each cell), and compress the two sections independently. Thus, RCFile has better data compression
efficiency. Column-store and column-group has significantly long loading times than both row-store and
RCFile.

Mastiff’s SLC-Store has a much larger horizontal partition granularity than RCFile and in each horizontal
partition SLC-Store uses a column group store while RCFile uses a pure column store. Evaluations with various
workloads show that Mastiff is up to 5 times faster in data loading and up to 7 times faster in aggregate query
execution than other systems including Hive/RCFile.

3. Column based storage structures
3.1 Column Store
Column-stores - In recent years, there has been renewed interest in so-called column-oriented systems,
sometimes also called column-stores [3]. Column-store systems completely vertically partition a database into a
collection of individual columns that are stored separately. By storing each column separately on disk, these
column-based systems enable queries to read just the attributes they need, rather than having to read entire rows
from disk and discard unneeded attributes in memory [6].

A similar benefit is true while transferring data from main memory to CPU registers, improving the overall
utilization of the available 1/0 and memory bandwidth [15]. Overall, taking the column-oriented approach to the
extreme allows for numerous innovations in terms of database architectures. Modern column-stores, their
architecture and evolution as well the benefits they can bring in data analytics.

COLUMN1.DAT

orrseto orrseta orrsets

[L | Column 1 I Column 1 b

Offsat 12 Offzat 16 Oftsat 20
Column 1 | Colummn 1 | Column 1 D

Offsetn Offsat 4 Offsata

l = I Column 2 | Column 2 D
@&mz onset 16 orset zo
| Column 2 | Column 2 | Column 2 b

COLUMN2.DAT

Fig 2: A COLUMN STORE Src: [7]

In the column-oriented approaches each column is stored independently as a separate data object. Since data is
typically read from storage and written in storage in blocks, a column-oriented approach means that each block
which holds data for the table holds data for one of the columns. The data need to access the provided date
columns, and the data blocks corresponding to these columns would need to be read from storage [3].

3.2 Rc File — Record Columnar File

Column-store can avoid reading unnecessary columns during a query execution, and can easily achieve a high
compression ratio by compressing each column within the same data domain. Column-store cannot guarantee
that all fields in the same record are located in the same cluster node. Therefore, a record reconstruction will
cause a large amount of data transfers via networks among multiple cluster nodes.

RCFile is designed and implemented on top of the Hadoop Distributed File System (HDFS). As demonstrated in
the above Figure 3 as shown. RCFile has the following data layout to store a table:

1. According to the HDFS structure, a table can have multiple HDFS blocks.

2. In each HDFS block, RCFile organizes records with the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into row groups. For a table, all row groups have the
same size.

ISSN : 2319-7323 Vol. 4 No.01 Jan 2015 27

JV N Lakshmi et al. / International Journal of Computer Science Engineering (IJCSE)

Fig 3: RC FILE TABLE STRUCTURE Src: [4]

3. A row group contains three sections. The first section is a sync marker that is placed in the beginning of
the row group. The sync marker is mainly used to separate two continuous row groups in an HDFS block.
The second section is a Metadata header for the row group. The third section is the table data section that

is actually a column-store [4].

3.3 Trojan Layout

The core idea of per-replica Trojan Layout is to first create query groups and then create column groups for each

query group separately [1]. This serves two purposes:

(i). Instead of creating a single layout for the entire workload, create multiple layouts; each specialized for a part

of the workload.

(ii). Query grouping can significantly decrease the number of referenced attributes for each query group reduces

the complexity of our column grouping store.

BI 42

TROJAN LAYOUT 1

wEPLICA 1[DH| B[FL]
REPLICA mmm‘
REPLICA 3 WEEH

BLOCK INFO
FORBLOCK 42 _©% ©¢2 <& |

Fig 4: TROJAN LAYOUT COLUMN GROUPING Src: [11]

Figure 4: Quadruplets for a data block
in Trojan HDFS stored at the name
node. This structured is composed: (i)
of a pointer to the data node (e.g. DN
7) storing a replica (e.g. the first
replica) of a data block (e.g. data
block 42), (ii) of a pointer to the
previous data block (e.g. data block
21) stored on DN 7, (iii) of a pointer
to the next block (e.g. data block 51)
stored on DN 7, and (iv) of a pointer
to the Trojan Layout descriptor for
that data block replica

Implementation of a variant of HDFS, called Trojan HDFS, to introduce per-replica Trojan Layouts into HDFS.

Trojan HDFS differs from HDFS in two aspects:

e The name node in Trojan HDFS keeps a catalog of the Trojan Layouts of all data block replicas. Trojan
HDFS exploits the fact that the name node maintains a triplet of pointers for each data block points to
the Trojan Layout descriptor of the data block replica. Figure 5 illustrates this quadruplet of pointers
associated to a data block replica. Note that more than one data block replica could point to the same

Trojan Layout descriptor [1].

e A data node in Trojan HDFS asks the name node for the Trojan Layout of each data block replica
stored locally. After receiving the Trojan Layout for a given data block replica, a data node internally
reorganizes the data of the data block replica according to the received layout. There are two ways: (i)
reorganize a data block as soon as the data block replica is copied locally, or (ii) reorganize a data

block after all replicas of the data block are copied to relevant data nodes.

3.4 Hbase — Schemaless Database

HBase is a database that sits on top of the HDFS and has tight Map Reduce integration. Like HDFS and Map
Reduce, it’s based on a technology described in a Google paper; that technology is called Big Table [13].

ISSN : 2319-7323 Vol. 4 No.01 Jan 2015

28

JV N Lakshmi et al. / International Journal of Computer Science Engineering (IJCSE)

ooogoo || ogoobs](oooogo || ooogon oosg0

oooooo || oobooo |rooodoo || coodoo ooco | ..

oooooo || oooooo || oooooo || cooooa || ohoooo
G

FIG 5: HBASE REGION STRUCTURE Src : [2]

a
Q
3
@
I

Just like the databases, HBase exposes a data model consisting of tables containing rows, with data within those
rows organized into columns. That’s basically where the similarities end [2]. From the web page, it’s designed
to manage big tables, billions of rows with millions of columns. HBase is a “schemaless” database says that
ahead of time what columns a table will contain.

3.5 Mastiff — Slcg Store

A structured data store over HDFS called Segment-Level Column Group Store (SLC-Store), which is a RCFile-
like column store integrated with two kinds of light-weight helper structures, to improve both data loading speed
and analytical query performance.

] Segment 1 CGroup 1
Ly Segment 2 CGrowp 2 |— Page 1
................................ Page 2
Segment n-1 CGroup k-1 | \ = |joeeeeeees
Segment n CGroup K Page x-1
Time Range 1 Off 1 CG1 Pagel Meta Page x
Time Range 2 Off 2 CG1 Page2 Meta
CG1 PageX Meta
TimeRangen-1 | Offn-1 || |\~ .
— Time Range n Off n
Segment meta offset — | \CGk Pagel Meta

\CGk Page2 Meta
\

CGk PageX Meta

FIG 6: SEGMENT LEVEL COLUMN GROUP STORE IN MASTIFF Src: [5]

As shown in Figure 6, a table in Mastiff is first horizontally partitioned into multiple segments. In each segment,
data are vertically partitioned into column groups, and each group may consist of one or more columns. Mastiff
table is physically stored by a single HDFS file and each segment is stored in an HDFS block. All column
groups in the same segment are stored one by one. Each segment is physically divided into fixed-size pages and
each column group in the segment is stored in contiguous pages [5].

Mastiff keeps two light-weight helper structures on disk along with the data. The segment-level helper structure
keeps the time range and the offset of each segment, and is stored at the end of each file. The segment-level
helper structure is a kind of coarse-grained helper structure, which reduces only the number of Map tasks. The
page-level helper structure in Mastiff is a kind of finer-grained helper structure. It is co-located with data, unlike
many indexes which are stored in separate files [5].

3.6 Table Placement Method

This section defines the basic structure of table placement methods. The basic structure of a table placement
method comprises three consecutive procedures, a row reordering procedure, a table partitioning procedure, and
a data packing procedure [8].

These three procedures are represented by three corresponding functions, which are frg, frp, and fpp,
respectively. In our definition, all rows of a table form a row sequence. The position of a specific row in the row
sequence refers to this row, e.g. the first row. Also, all columns of a table form a column sequence. The position
of a specific column in the column sequence refers to this column, e.g. the second column. In this way, the use
of position refers to a specific data value in the table, e.g. the data value at the first row and the second column

(8].

ISSN : 2319-7323 Vol. 4 No.01 Jan 2015 29

JV N Lakshmi et al. / International Journal of Computer Science Engineering (IJCSE)

Vi | Wiz Vi3 Vi | s Va2 Was Wias

Vo [Var | Vi | Vs Vo | Var [Vs | Vis e

TV Lt Lt Va Vaa Lt T REOW RECRDERING

Vi [Ve [Va [V (Vo W T W [TV

(Ve [V [Ve Ve [Va [V [Va] V=] TAELE PARTITICNING
IS 1.1] 513

[[Vo] [Ve e L Ve[Ve]| V=l V]
I§11 513 1513 AT AT

[V [Voo [T Ve] Vaa [[Var [Vee [[Vae] Mis] L5T.1 5T
L5 11 L5513 L52.1 L523 [— = o = = [Vo] Va] Vo] Va |
PE1.1 PFB1.2

Fig 7: TABLE PLACEMENT METHOD Src: [8]
4. Comparisons among various table structures

The comparison of various table structures basing on parameters data loading, data compression, data storage
and table structures.

A. Data Loading: For a data placement structure, data loading time is an important factor for daily operations.
Reducing this time is critical for processing 20TB data into the production warehouse every day.

B. Data Compression: Compression algorithms perform better on data with low information entropy (i.e., with
high data value locality), and values from the same column tend to have more value locality than values
from different columns.

C. Data Storage: The storage space sizes required by the raw data and several data placement structures vary.
Data compression can significantly reduce the storage space, and different data placement structures show
different compression efficiencies.

TABLE 1: COMPARISONS OF VARIOUS TABLE STRUCTURES

Parameters Table Structures
Row Column RC File | Trojan | HBase | Mastiff Table
store Store Layout Placement
Method
Data Loading 35% 45% 61% 43% 64% 67% 56%
Data 23% 56% 63% 54% 57% 65% 45%
Compression /
Data Packing
Data Storage 39% 61% 69% 65% 72% 71% 66%
Table Structure 26% 63% 67% 42% 69% 70% 54%
Efficiency
Type of Table Row Column Records | Column | Row- Segment Grouping
Structure Group | Column Column Columns
Group

D. Table Structure: Row-store efficiency is compared with various table structures Trojan layout, HBase,
Table Placement Method, and SLCG store, column store, and RCFile.

80%
— Rowstone

0% A ——

60% y ~— st

S

RCFile

40%
30% % e TrojanLayout
se

20%
10%
0%

FIG 8: PARAMETERS COMPARISON ON TABLE STRUCTURES

ISSN : 2319-7323 Vol. 4 No.01 Jan 2015 30

JV N Lakshmi et al. / International Journal of Computer Science Engineering (IJCSE)

The tablel compares the various table structures with row stores by viewing on different parameters. The results
on comparison reveals that the column oriented data structures have fast data loading, high storage and data
compression than row stores from fig 8.

5. Conclusion

The Row Store has less compression efficiency when compared to column stores. The table structure organized
in RCFile has high data compression. Data loading in SLCG store of Mastiff has better performance. The
inference from comparison Table Placement method’s row group size should be large enough so that the column
(or column group) size inside a row group will be large enough and when the row group size is large enough and
the column-oriented access method is used to read columns, it is not necessary to group multiple columns to a
column group. So, therefore the combinations of row with multiple column groups will definitely have an
effective impact on data storage structures.

References

[1] “Trojan Data Layouts: Right Shoes for a Running Elephant”, by Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, Jens Dittrich

[2] *“Hbase Schema Design nosq”l Cologne, April 2013 Lars George Director EMEA Services.

[3] “The Design and Implementation of Modern Column-Oriented Database Systems™ , by Daniel Abadi , Peter Boncz , Stavros
Harizopoulos

[4] “Rcfile: A Fast and Space-efficient Data Placement Structure in mapreduce-based Warehouse Systems”, by Yonggiang He, Rubao
Lee, Yin Huai

[5] “Mastiff: A mapreduce-based System for Time-based Big Data Analytics” , by Sijie Guo, Jin Xiong, Weiping Wang Rubao Lee

[6] J. Abadi, D.S. Myers, D. J. Dewitt, and S. Madden, “Materialization strategies in a column-oriented dbms,” ICDE, 2007.

[7] M. Stonebraker, D. J. Abadi, P. E. O’Neil, A. Rasin, N. Tran, and “C-store: A column-oriented dbms,” in VLDB, 2005.

[8] Chang, J. Dean, S. Ghemawat, A. Fikes, “Bigtable: A distributed storage system for structured data,” in OSDI, 2006, pp. 205-218.

[9] Http://hbase.apache.org. and Http://mapreduce.apache.org

[10] J. Abadi, s. Madden, and n. Hachem, “Column-stores vs. Row-stores: how different are they really?” In sigmod conference, 2008

[11] Bentley, j. L., and mcilroy, m,“Data compression using long common strings”. In data compression conference (1999), pp. 287.295.

[12] Bloom, b. H. Space/time trade-offs in hash coding with allowable errors. Cacm 13, 7 (1970), 422.426.

[13] Abouzeid, Abadi, A. Rasin, “Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical
workloads,”PVLDB, 2009

[14] S. Navathe et al. “Vertical Partitioning Algorithms for Database Design”. ACM TODS, 9(4):680-710, 1984.

ISSN : 2319-7323 Vol. 4 No.01 Jan 2015 31

