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Abstract 

In this paper compares the rule classifiers based on the evaluation metrics. The classification is a step by step 
procedure for designating a given piece of input data into any one of the given categories. Analyzing the 
performance of 3 Rules classifiers algorithms namely JRIP, RIDOR, Decision Table. The Iris datasets are used 
for calculating the performance by using the cross validation parameter. And finally find out the comparative 
analysis based on the performance factors such as the classification accuracy and execution time is performed 
on all the algorithms. The goal of this paper is to specify the best technique from the rules classification 
technique under the Iris datasets and also provide a comparison result which can be used for further analysis. 

Keywords: - Rule classifiers, JRIP, RIDOR, Decision Table, cross validation, and Iris dataset. 

I. INTRODUCTION 

The aim of our work is to investigate the performance of different classification methods using WEKA 
for Iris dataset. WEKA is a data mining system developed by the University of Waikato in New Zealand that 
implements data mining algorithms using the JAVA language. WEKA implements algorithms for data 
preprocessing, classification, regression, and clustering and association rules. It also includes visualization tools 
[1]. 

 In our work the classification is done based on rule classifier. It is used to automatically classify the 
variable. The rule classifier is generated for predict the best value. The characteristics of rule based classifier are 
mutually exclusive rules and exhaustive rules. In the mutual exclusive and each rule are independent. In 
exhaustive rules it has a combination of attribute values. It has small independent chunks of knowledge and it 
can be easier to explain. 

In this paper comparison is made to find out the optimal result for Rules classifier algorithm such as 
JRIP, RIDOR and Decision Table. In the test option there are four kinds of parameter like training set, supplied 
test set, cross validation and percentage spilt. In this paper the cross validation parameter is used to calculate the 
data set values. The Iris dataset is using for comparison of those algorithms. And our paper described the 
following sections, Section 2 describes the literature review, Section 3 describes the methodology and Section 4 
describes our experimental result and discussion. And finally Section 5 gives the Conclusion. 

II. LITERATURE REVIEW 

Lakshmi Devasena C., proposed the rule based classifier algorithm namely, RIDOR, ZeroR and PART 
Classifiers for credit risk prediction. using the open source machine learning tool the test is completed. RIDOR 
Classifier performs best, followed by PART Classifier and then by ZeroR Classifier for credit risk prediction by 
taking various measures [3]. 

C. Lakshmi Devasena et., studied Rule based classifiers are used to estimate classification accuracy of 
that classifier in a classification problem using Iris dataset. Among these classifiers (Conjunctive Rule 
Classifier, Decision Table Classifier, DTNB Classifier, OneR Classifier, JRIP Classifier, NNGE Classifier, 
PART Classifier, RIDOR Classifier and ZeroR Classifier) NNGE classifier performs well in classification 
problem [4]. 

M. Thangaraj et al., presented rule based classifier across multiple database relations using tuple-id 
propagation technique. The overall position is done based on the number of relations, number of tuples, number 
of attributes, number of foreign keys, classification accuracy and runtime. Based on the results, PART Classifier 
appears to be superior to Decision tree, RIPPER and RIDOR [5]. 

Mohd Fauzi bin Othman et al., investigated the performance of different classification or clustering 
methods for a set of large data. The breast cancer dataset are used and tested based on Bayes Network, Radial 
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Procedure BUILDRULESET (P,N) 

P=positive examples 

N=negative examples 

RuleSet={} 

DL=DescriptionLength (RuleSet, P, N) 

while P not equal to {} 

// Grow and prune a new rule 

split (P,N) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg) 

Rule := GrowRule (GrowPos, GrowNeg) 

Rule := PruneRule (Rule, PrunePos, PruneNeg) 

add Rule to RuleSet 

if DescriptionLength (RuleSet, P, N) > DL+64 then 

// Prune the whole rule set and exit 

for each rule R in RuleSet 

if DescriptionLength (RuleSet -> R}, P, N) < DL then 

delete R from RuleSet 

DL := DescriptionLength (RuleSet, P, N) 

endif 

end for 

return (RuleSet) 

endif 

DL := DescriptionLength (RuleSet, P, N) 

delete from P and N all examples covered by Rule 

end while 

end BUILDRULESET 
 

Procedure OPTIMIZERUKESET (RuleSet, P, N) 

for each rule R in RuleSet 

delete R from RuleSet 

U Pos := examples in P not covered by RuleSet 

U Neg := examples in N not covered by RuleSet 

spilt (U Pos, U Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg) 

RepRule := GrowRule (GrowPos, GrowNeg) 

RepRule := PruneRule (RepRule, PrunePos, PruneNeg) 

RevRule := GrowRule (GrowPos, GrowNeg, R) 

Rev Rule := PruneRule (RevRule, PrunePos, PruneNeg) 

choose better of RepRule and RevRule and add to RuleSet 

  end for 

end OPTIMIZERULESET 
 

Procedure RIPPER (P,N, k) 

RuleSet := BUILDRULESET (P,N) 

repeat k times RuleSet := OPTIMIZERULESET (RuleSet, P, N) 

return (RuleSet) 

end RIPPER 
 

Fig 2 Pseudo code for JRIP Classifier [2] 
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b) RIDOR 

Ripple Down Rule learner (RIDOR) is also a direct classification method. It constructs the default rule. 
An incremental reduced error pruning is used to find exceptions with the smallest error rate, finding the best 
exceptions for each exception, and iterating. The most excellent exceptions are created by each exceptions 
produces the tree-like expansion of exceptions. The exceptions are a set of rules that predict classes other than 
the default. IREP is used to create exceptions [7]. The pseudo code is describes in Fig 3. 

 

Algorithm: Ridor (D,Rt)  

Imput      : A relational database D with target 

       Relation Rt that contains P positive and N negative tuples 

Output      : A set of rules for predicting class labels of target tuples 

Procedure: 

Rule set R= empty 

If |Rt|< MIN_SUP then return 

Ruler=empty rule 

Set Rr active 

Repeat 

Find a rule in active relation 

Learn except branch and if not branch 

Set relation of r to active 

R=R+r 

X=X-r 

Until (X=NULL) 

Set all active relations into inactive 

Return R 

End 

 
Fig 3 Pseudo code for Ridor Classifier 

c) Decision Table 

A decision table specifies only the logical rules. It is used to find out the decision quality. Conditional 
logic in this context refers to a set of tests, and a set of actions to take as a result of these tests. The classifier 
rules decision table is described as building and using a simple decision table majority classifier. The decision 
table classifiers has two variants such as 

o DTMaj (Decision Table Majority) 
o DTLoc(Decision Table Local) 

Decision Table Majority returns the majority of the training set if the decision table cell matching the 
new instance is empty, that is, it does not contain any training instances. 

Decision Table Local is a new variant that searches for a decision table entry with fewer matching 
attributes (larger cells) if the matching cell is empty. Hence this variant returns an answer from the native region 
[8] [9]. The pseudo code step is describes in Fig 4. 
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Input: T-decision table, Rd-a set of deterministic decision rules of  ܶ,  α 0.5,1| א|, 

 

k- upper bound on the number of decision values; 

Output:  Rnd(α)- a set of nondeterministic decision rules for ܶ. 

Rnd ՚ ߶ ; 

for all r א ܴd do 

     {r: ܮ ՜(݀ = ߥ); 1ܦ = ܮ ^ … .  {;dܸ ߳ ߥ ; mܦ ^

                   STOP ՚ false: 

 ;(ܮ) ՚ norm_suppߣ                    

       repeat 

                       for all condition attributes from r do 

 ;mܦ ^…^i+1ܦ ^ .… ^ 1ܦ = ܮ                                     

 {  is obtained by dropping ݅- th attribute from the left hand side rule rܮ}                               

ܮ||       ߠ  ;߬ || ൌ ሼ ߥ ߳ Vd ; ௫߳ ߥ  d(ݔ) = ߥሽ ; 

      Sorting in decreasing order ߠ; 

ߠ       ؿ  :ߠ  ՜ ܮ൫ ݂݊ܿ ሺ݀ ൌ ሻ൯ߠ ൌ
||| ||ת||ఏ|||

||| |||
  ;ߙ  ሼߠ ݃݊݅ݐ݈ܿ݁݁ݏ ݕ݀݁݁ݎሽ 

ߣ          ՚ ܮ௦௨ሺ݉ݎ݊    ՜  ; ሻߠ 

         end for 

௫ߣ                 
  ՚  ;ൟߣ൛ ݔܽ݉݃ݎܽ

               If ߣ௫      thenߣ 

ߣ ; iܮ ՚  ܮ         ՚ ;௫ߣ ሼ߬ௗ: ՜ ܮ ሺ݀ ൌ  ߣ ;ሻߠ

              else 

       STOP ՚ true; 

              end if 

        until STOP 

     If |ߠ|  k then 

          Rnd ՚ Rnd  {՚ ߬nd}; 

      end if 

          end for 

          return Rnd; 

 

Fig 4 Pseudo code for Decision Table Classifier 

IV. RESULTS AND DISCUSSION 

 The work is performed using weka tool to predict the effectiveness of the rule-based classifiers. The 
performance is calculated based on the accuracy measure. From the results the RIDOR classifier algorithm 
performs well as compare to the JRIP and Decision Table. Table 1 shows the performance of the various 
algorithms measured in classification accuracy and comparison among these classifiers based on the correctly 
classified instances are shown in Figure 1 

Table 1: Accuracy Measure by Class for Rule Classifiers 

Algorithms Correctly 
Classified

Incorrectly 
Classified 

Kappa TP Precision Recall F-
Measures 

ROC 

JRIP 93.28 6.71 0.89 0.9 0.8 0.9 0.88 0.94 

RIDOR 95.30 4.69 0.92 0.92 0.93 0.92 0.92 0.94 

Decision 
Table 

91.94 8.05 0.87 0.9 0.9 0.9 0.9 0.96 
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Statistical analysis 

 Using Iris dataset the classification is done based on the cross validation parameter. In this work the 10 
folds cross validation classification are given to the rule classifier algorithms. When increasing the folds 
10,15,20,25 to find the accuracy of each classifiers. During the 15 folds the JRIP gives the higher correctly 
classified accuracy. During the 20 folds the RIDOR and JRIP produces the best solution. During the 25 folds the 
RIDOR has the higher correctly classification. In this experiment the RIDOR gives the minimum time to obtain 
the results and the execution time is 0.01 s. In the rule classifier algorithms based on the time and accuracy 
RIDOR only gives the optimal result.  

V. CONCLUSION 

In this paper analyzed the performance of 3 Rule classifiers algorithms namely JRIP, RIDOR and 
Decision Table. By Using the Iris datasets the performance is calculated using the cross validation parameter. 
And finally we analyzed the algorithms by using the performance factors such as the classification accuracy and 
execution time. From the results, it is observed that the RIDOR algorithm performs better than other algorithms. 
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