
Analyzing Slicing of Program through
Cohesion Metric

Kumar Rajnish
Department of CSE

Birla Institute of Technology, Mesra
Ranchi, India

krajnish@bitmesra.ac.in

Mayank Manohar
Department of CSE

Birla Institute of Technology, Mesra
Ranchi, India

mayankmanohar8@gmail.com

Abstract

This paper presents a new cohesion metric for a program which is used to analyze the slicing criterion. Based on
the value of propose cohesion metric it is decided to perform slicing in a program or not. The propose cohesion
metrics is also evaluated analytically against Weyuker’s Property and perform comparison with the existing
cohesion metrics of Meyers et al. The results in this paper shows that the propose cohesion metric is a good
method for analyzing the slicing of a program or not. Data for 16 ‘C’ programs has been collected from open
source software system. For analyzing the results IBM SPSS software were used.

Keywords- Cohesion; Metric; Program Slicing; Weyuker’s Property; Program; Module;

I. INTRODUCTION

Program slicing is a method of program analysis which is used to extract a set of statements in a program
which is relevant for a particular computation. The idea of program slicing was given by Mark Weiser [1].
Program slicing can be used in various software engineering activities such as program understanding, program
maintenance, debugging, testing, complexity measurement etc. Program slicing is a method of obtaining subparts
of a program with a collective meaning. A program slice consists of the parts or components of a program that
affect the values computed at some point of interest, referred to as a slicing criterion. A program slice consists of
a pair <s, V> where s represents the statement number of the program and V represents the subset of variables.
With the help of program slicing one can find a smaller program which still maintenance the original aspect of the
program. A program slicing can be used to measure the cohesion level of software units. However, limited work
has been done in quantitative cohesion metrics. The most popular work on qualitative cohesion metrics has been
done by Bieman and Ott. et al [2,14]. Their cohesion metrics are based on program slicing. A module consists of
collection of processing elements working together to build outputs of the modules given in [14]. A module can
be categorized into low cohesion and high cohesion in which a modules with low cohesion consists of two or
more independent processing elements whereas a modules with high cohesion consists of collection of highly
related processing elements.

Riazur Raheman et al [3] address different types of program slicing techniques by considering a very simple
example. Program slice is computed by analyzing dependence relations between program statements. To
compute program slices they constructed intermediate structures of a program such as program dependence
graph. Also, they address the comparison between different types of slices. Meyers et al [4] suggests that slice-
based cohesion metrics quantify overall code quality. Effects of software evolution on slice based metrics is
measured. Gives base-line values for the slice-based cohesion metrics: Tightness, Min Coverage, Coverage,
Max Coverage, and Overlap. Base-line values are useful in the identification of degraded modules. Finally, they
compares the different metrics “head-to-head.” Thus, providing a better understanding of their relationships and
indicating which metrics provide a similar view of a program and which provide complimentary views of the
program.

Fumiaki OHATA et al. [5] implement a slicing method for Object Oriented programs. Their slicing method
is an intermediate method between static slicing and dynamic slicing. Their proposed method dynamically
analyze all the data dependence and control dependence relations about method invocations and their analyze
precision is better as compared to static slicing. Also their analysis costs is less than that of dynamic slicing.
Timothy M Meyers et al. [6] suggests large scale empirical investigation of slice-based cohesion metrics. They
provides a head to head metrics comparison. Their metrics have the capacity to be used at the program level to
guide the effects of reverse engineering's attempt to “improve” code . Finally their metrics provide good
estimates of expected metric values. Their values can be used at the module level to focus the attention of

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 94

reverse engineers on particularly object modules. Mehmet Kaya et al. [7] improve the structure of an existing
class without changing its external behavior. They presents a new cohesion metric based on program slicing and
graph theory for units using object oriented paradigm. Their aim to find out if a class is cohesive, handling one
specific operation. When a class has more than one abstraction, this technique suggests a restructuring for
generating more cohesive units based on this new cohesion metric. Sonam Jain et al. [8] implement a mixed
slicing approach of static and dynamic slicing i.e. S-D slicing approach in generating a program slice.
Specifically, in this study they develop a code that have an Object Oriented approach by using both static and
dynamic slicing. Durga Prasad Mohapatra et al. [9] survey the existing slicing techniques for object-oriented
programs. Many commercial object oriented programs are concurrent in nature.

Concurrency is typically implemented in the form of multithreading or message passing using socket or
both. They review the available techniques in slicing of concurrent object-oriented programs. Another trend that
is clearly visible in object-oriented programming is client-server programming in a distributed environment.
Andrea De Lucia et al. [10] implements a conditioned slicing approach as a general framework for program
comprehension that addresses all slicing paradigms. A program comprehension can be used to implement
complex functionalities. They provide a conditioned slicing as a general framework for program comprehension.
Heung Seok Chae et al. [11] implements a cohesion measurement tool (HYSS) for C++ programs, to automate
the computation of the various cohesion measures including cohesion based on member connectivity (CBMC).
Using HYSS they performed a case study with the Interviews system in order to demonstrate the effectiveness
of CBMC. Their result showed that CBMC captured a new aspect of properties of classes that was not captured
in the existing cohesion measures. Norihiro Yoshida et al. [12] provides support in the comprehension of
functions, and proposed a technique to extract sets of code fragments which realize the same features within a
function by making use of cohesion metrics. David Bowes et al. [13] focuses on the difficulties associated with
what they anticipated would be a small and simple replication study. Their focus particularly on the problems
related to specifying precisely and implementing consistently the definition of metrics being used to collect data.

The aim of the work presented here is to propose new cohesion metric for a program which used to analyze
the slicing criterion. Based on the value of propose cohesion metric it is decided to perform slicing in a program
or not. To increase the usefulness of the propose cohesion metric it also compare with the existing cohesion
metrics which discussed in the Section III and analytical evaluation against Weyuker’s property discussed in
Section IV.

The rest of the paper is organized as follows: Section II deals with the Weyuker’s properties. Section III
deals with the existing cohesion metric which is used in our study. Section IV deals with the propose cohesion
metric along with the examples illustrations and its analytical evaluation against Weyuker’s properties. Section
V deals the results and discussion. Section VI deals with the conclusion and future scope respectively.

II. WEYUKER’S PROPERTY

The Weyuker properties [15] are listed in Table 1. The notations used are as follows: P, Q and R denote
programs, P+Q denotes combination of program P and Q; M denotes the chosen metrics, M (P) denotes the
value of the metric for program P, and P≡Q (P is equivalent to Q) means that two program designs, P and Q,
provide the same functionality. The definition of combination of two programs is taken here to be the same as
suggested by [16], i.e., the combination of two programs results in another program whose properties (methods
and instance variables) are the union of the properties of the component programs. Also, “combination” stands
for Weyuker’s notion of “concatenation”.

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 95

TABLE I. WEYUKER’S PROPERTY

Property
No

Property Name Description

1 Non-coarseness Given a program P and a metric M, another program Q can
always be found such that, M (P) ≠ M (Q).

2 Granularity There is a finite number of programs having the same
metric value. This property will be met by any metric
measured at the program level.

3 Non-uniqueness (notion of
equivalence)

There can exist distinct program P and Q such that, M (P) =
M (Q).

4 Design details are important For two program designs, P and Q, which provide the same
functionality, it does not imply that the metric values for P
and Q will be the same.

5 Monotonicity For all programs P and Q the following must hold: M (P) ≤
M (P + Q) and M (Q) ≤ M (P + Q) where P + Q implies
combination of P and Q.

6 Non-equivalence of interaction P, Q, R such that M (P) = M (Q) does not imply that
M (P+R) = M (Q+R).

7 Interaction among statements Permutation of program statements can change the metric
value.

8 No change on renaming If P is renaming of Q then M (P) = M (Q)

9 Interaction increases
complexity

 P and Q such that: M (P) + M (Q) < M (P + Q).

III. EXISTING COHESION METRIC

Meyers et al [4] provides five different sliced-based cohesion metrics which is used in this study. These
metrics are listed below:

Tightness (M) measures the number of statements included in every slice. Higher value of Tightness
indicates a higher degree of functional cohesion within the module.

Tightness (M) =
)(

|| int

Mlength

SL

Min Coverage (M) is the ratio of smallest slice in a module to the module’s length. Higher value of Min
Coverage indicates that the smallest slice in the module requires most of the statements in the module whereas
all the other slices include a greater number of statements.

Min Coverage (M) =
)(

||min

Mlength

SLi

Coverage (M) compares the length of slices to the length of the entire module. Lower the value of Coverage
indicates several distinct processing elements and also causes low cohesion.

Coverage (M) =

Vo

i

i

o Mlength

SL

V 1

||

||

1

Max Coverage (M) is the ratio of largest slice in a module to the module’s length. Higher the value of Max
Coverage indicates that longest slice in a module requires most of the statements in the module.

Max Coverage (M) = Mlength

SLi ||max

Overlap (M) is the measure of average number of overlapping statements in all the slices. A high value of
Overlap may indicate high code interdependence since most of the statements belong to the most of the slices.

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 96

Overlap (M) =

Vo

i io SL

SL

V 1

int

||

||

||

1

IV. PROPOSE SLICING COHESION METRIC

Under this section we present the definition of propose cohesion metric, examples for illustration, analytical
evaluation of propose cohesion metric against Weyuker’s properties and interpretation based on the result
obtained.

A. Definion

This section presents the propose cohesion metric which is used for predicting the slicing requirement of a
program. The propose cohesion metric is defined as follows:

Direct Cohesion Metric (DCM) = NVSVS
n

i

n

i
outiini /

1 1

Where,

S =Statement of the program.

Vin=Input variable of the program.

Vout=Output variable of the program.

N=Total number of statements of the program.

Lack of Cohesion Metric (LCM) = 1 – DCM �[0,1].

Based on the value of DCM and LCM it will decide whether slicing is required in a program or it is difficult

to perform slicing in a program.

Certain important criteria have been design for program slicing from the relationship between DCM and

LCM which are mentioned below:

Criteria 1: if DCM > 0.5 then

Program is cohesive in nature as LCM is lies between 0 to 0.5. There is less chances to perform slicing of

program as properties (input and output data) of program are related to each other within the program.

Criteria 2: if DCM < 0.5 then

Program is less cohesive in nature and LCM is lies between 0.5 to 1. There is more chances to perform

slicing of a program as properties of program are less related to each other within the program,.

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 97

B. Examples for illustartion

/// Program 1: This program is used to calculate
the sum and product of ith number

S1 void main()
S2 {
S3 int i;
S4 int sum = 0;
S5 int product = 1;
S6 for(i = 0; i < N; ++i)
S7 {
S8 sum = sum + i;
S9 product = product *i;
S10 }
S11 cout<< sum;
S12 cout<< product;}

From the above program values for DCM and

ICM is as follows:

DCM = 0 and LCM = 1 – DCM = 1 -0 = 1

From the Criteria discussed above program 1

needs to be sliced and it can be divided in two

parts (Say program P2 and P3) counts the given

statement numbers:
For P2: S1, S3, S4, S6, S8 and S11.
For P3: S1, S3, S5, S6, S9 and S12.

/// Program 2 : This program is used to calculate the
average and percentage of five different subjects

S1 void main()
S2 {
S3 int m1,m2,m3,m4,m5,total;
S4 float average, percentage;
S5 printf("Enter marks for subject one - ");
S6 scanf("%d",&m1);
S7 printf("Enter marks for subject two - ");
S8 scanf("%d",&m2);
S9 printf("Enter marks for subject three - ");
S10 scanf("%d",&m3);
S11 printf("Enter marks for subject four - ");
S12 scanf("%d",&m4);
S13 printf("Enter marks for subject five - ");
S14 scanf("%d",&m5);
S15 total=m1+m2+m3+m4+m5;
S16 average=total/5;
S17 percentage=(average/100)*100%;
S18 printf("\nThe average of five subjects
is%f",average);
S19 printf("\nPercentage=%f",percentage);
S20 getch();}
From the above program values for DCM and LCM is
illustrated below:

DCM=0.6 and LCM=1-DCM=1-0.6=0.4
From the Criteria discussed above program 2 is
difficult to slice as the value of DCM is greater than 0.5
and LCM is 0.4 which indicates program 2 little more
cohesive.

C. Analytical Evaluation of Propose Metric against Weyuker’s Properties

Certain assumptions have been defined below for performing analytical evaluation of DCM against
Weyuker’s Properties:

1. Two input variables of the same name used in two different programs / modules is considered to be
same after combining two programs in a single program.

2. Two output variables of the same name in two different programs / modules is considered to be distinct
variable and after merging one output variable will be assigned to another variable to resolve the
conflict.

3. When two programs / modules are combined number of statements of combined program will increases
and statements of a program will be placed according to the rules of the programming language.

Let Zp = DCM and LCM for Program P

Let ZQ = DCM and LCM for Program Q

Which are the function of a number of inputs, number of outputs and number of statements of a program which
are independent and identically distributed.

Property 1 and Property 3 are satisfied it is because of the assumption of statistically distribution of inputs and
outputs of variables. It means there is a situation where M (P) = M (Q) and M (P) ≠ M (Q).

Property 2 is satisfied because there is a finite number of programs having the same metric value and this
property will be met by any metric measured at the program/module level.

Property 4 is satisfied because the choice of input variables, output variables and the number of statements of
programs are design implementation dependent.

From assumptions mentioned above considering the program 1 of Section B (Program of Sum and Product of
first n numbers say P+Q). Program 1 may be divided into two programs say P (sum of first n numbers) and Q
(product of first n numbers) program P has contained 9 statements and program Q has also contained 9
statements. After merging program P and program Q whose number of statements is 12. It is clearly obvious
that for all programs P and Q the conditions: M (P) ≤ M (P + Q) and M (Q) ≤ M (P + Q) holds, where P + Q

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 98

implies combination of P and Q. Hence, property 5 is satisfied.

Considering the three programs say P, Q and R. Program P and program Q may have the same number of
statements with varying input and output variables. Suppose program R have common input or output variables
with varying in number of statements. Typically at some situation where M(P)= M(Q) but it does not mean that
M(P+R)=M(Q+R). Hence, property 6 is satisfied.

Property 7 requires the permutation of program statements can alter the metric value. It is because changing the
order of statements in IF-THEN-ELSE block can change the logic of the program. Hence property 7 is satisfied.
Only this property can applicable in traditional program.

Property 8 is also satisfied it is because changing of name of program can never affect upon the programs metric
value.

 Property 9 (Interaction Increases Complexity) is not satisfied.

Consider any two programs A and B with NA and NB number of statements for program A and program B
respectively, the following association holds:

DCM(A) = NA and DCM (B) = NB

DCM(A + B) = NA + NB – α.

Where, α is the number of common statements. Therefore, DCM (A + B) ≤ DCM (A) + DCM (B)

Table II. Analytical Evaluation Results against Weyuker’s Property [√: Metric Satisfies the properties ×: Metric which does not satisfy the
Properties]

S.NO PROPERTY NAME DCM

1. Non-coarseness √

2. Granularity √

3. Non-uniqueness
(notion of

equivalence)

√

4. Design details are
important

√

5. Monotonicity √

6. Non-equivalence of
interaction

√

7. Interaction among
statements

√

8. No change on
renaming

√

9. Interaction increases
complexity

×

V. RESULTS AND DISCUSSION

In this section, we analyze the results of the used program with several calculated parameters like tightness,
min coverage, coverage, max coverage, overlap, DCM, LCM. These programs are collected from the open
source software system. The result is provided in Tables III and figure 1 shows the corresponding graph of
Table III. The Correlation Coefficient of existing and propose cohesion metric are shown in Table V.

In this paper, an attempt has been made to design an cohesion metric with the help of some program
collected from open source software system. We calculated many existing metric and these metrics are
compared with the help of proposed metric. To validate the proposed metric the correlation has been calculated
with the existing metrics used in this work, and it is found that the correlation is in acceptable level. The
correlation between tightness and min coverage is 0.865, tightness and coverage is 0.924, dcm and tightness is
0.854 and the rest of the results are given in table V. In addition to it, Weyuker’s property are also used to
validate the proposed metric, eight out of nine properties are satisfied by the proposed measure. According to
the above evaluated results it can be concluded that the proposed measure qualify as a worthy measure as seen
in the correlation outcome between two measures (provided in Table V) and Weyuker’s property described in
section II.

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 99

Table III. Metric Values

Program Tightness Mincoverage Coverage Maxcoverage Overlap DCM LCM LOC

P1 0.20 0.50 0.50 0.50 0.40 0 1 9

P2 0.56 0.62 0.73 0.84 0.78 0.56 0.44 18

P3 0.30 0.63 0.63 0.63 0.47 0.15 0.85 33

P4 0.41 0.67 0.67 0.67 0.62 0.18 0.82 12

P5 0.39 0.62 0.67 0.77 0.58 0.16 0.84 11

P6 0.58 0.64 0.76 0.85 0.79 0.40 0.60 19

P7 0.67 0.74 0.77 0.80 0.87 0.45 0.55 14

P8 0.50 0.64 0.65 0.69 0.77 0.26 0.74 24

P9 0.58 0.72 0.75 0.79 0.77 0.30 0.70 14

P10 0.50 0.63 0.75 0.86 0.66 0.20 0.80 25

P11 0.72 0.83 0.83 0.83 0.86 0.60 0.40 13

P12 0.25 0.45 0.48 0.55 0.52 0 1 21

P13 0.40 0.60 0.60 0.60 0.67 0 1 9

P14 0.67 0.75 0.75 0.75 0.89 0.30 0.70 11

P15 0.28 0.42 0.48 0.50 0.61 0 1 11

P16 0.42 0.65 0.65 0.65 0.63 0 1 14

Table IV. Summary Statistics for DATA SET of Table III

Table V. Correlation Coefficient of Metrics

Metric Tightness Min
Coverage

Coverage Max
Coverage

Overlap DCM LCM

Tightness - 0.865 0.924 0.841 0.953 0.854 -0.854
Min Coverage 0.865 - 0.912 0.734 0.721 0.717 -0.717
Coverage 0.924 0.912 - 0.938 0.784 0.839 -0.839
Max Coverage 0.841 0.734 0.938 - 0.714 0.825 -0.825
Overlap 0.953 0.721 0.784 0.714 - 0.773 -0.773
DCM 0.854 0.717 0.839 0.825 0.773 - -1
LCM -0.825 -0.717 -0.839 -0.825 -0.773 -1 -

Minimum Maximum Mean

Std.
Deviation

Tightness .20 .72 .4644 .15912

Min Coverage .42 .83 .6319 .10685

Coverage .48 .83 .6669 .10793

Max Coverage .50 .86 .7050 .12399

Overlap .40 .89 .6806 .14617

DCM .00 .60 .2225 .20201

LCM .40 1.00 .7775 .20201

LOC 9.00 33.00 16.1875 5.78756

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 100

Figure 1: Metric values for 16 Programs

VI. CONCLUSION AND FUTURE WORK

In this paper, an attempt has been made to propose a cohesion metric and based on the value of that
cohesion metric it can be find out that whether slicing is required in a program or not. If the value is below 0.5
then the program can be easily sliced else it is difficult to slice a program. This greater indicates the coupling
between the class so we cannot slice the program very comfortably so we need to restructure our program for
better slicing. The result of the proposed metric has been also compared with the previous used cohesion metrics
and the correlation is calculated between proposed and existing metric. And the result of correlation that is given
in Table V indicates that the better relationship exists between these cohesion measures. To further validate the
proposed cohesion metric Weyuker’s property is used, eight out of nine properties are satisfied. The
experimental result reveals that the proposed measures qualify the lot of paper work formalities to be a good
cohesion measure.

The future scope is focuses on some fundamental issues: this paper uses C programs without function call.
So this work can be extended to validate this work using the programs including function calls.

Acknowledgement

I would like to thank my guide Dr. Kumar Rajnish, department of Computer Science and Engineering, Dr.
Sandip Dutta, HOD, department of Computer Science and Engineering, BIT Mesra and all my friends without
whom this work cannot be possible.

References
[1] M. Weiser. “Program slicing”. IEEE Transactions on SE 10(4), 1984.
[2] J.Bieman and L. Ott. Measuring functional cohesion.IEEE Transaction on software Engineering, 20(8);644-657, August 1994.
[3] Riazur Raheman1, Amiya Kumar Rath2 and M Hima Bindu3 “International Journal of Advanced Research in Computer Science and

Software Engineering” Volume 3,Issue 11, November 2013,pp. 435-442.
[4] Timothy M. Meyers and David Binkley “Slice-Based Cohesion Metrics and Software Intervention” Proceedings of the 11th Working

Conference on Reverse Engineering (WCRE’04) 2004 IEEE.
[5] Fumiaki OHATA, Kouya HIROSE, Katsuro INOUE and Masato FUJII “A Slicing Method For Object-oriented Programs Using

Lightweight Dynamic Information” 2001 IEEE.
[6] Timothy M. Meyers and David Binkley “An Empirical study of Slice-Based Cohesion and Coupling Metrics” ACM Transactions on

Software Maintenance, Vol. V, No. N, November 2007, Pages 1–25.
[7] Mehmet Kaya and James W. Fawcett “A New Cohesion Metric and Restructuring Technique for Object Oriented Paradigm” 2012

IEEE 36th International Conference on Computer Software and Applications Workshops, pp. 296-301.
[8] Sonam Jain1, Sandeep Poonia2 “A New approach of program slicing:Mixed S-D(static & dynamic) slicing” International Journal of

Advanced Research in Computer and communication Engineering, Vol. 2,Issue 5, May 2013.
[9] Durga Prasad Mohapatra, Rajib Mall and Rajeev Kumar “An Overview of Slicing Techniques for Object-Oriented Programs”

Informatica 30 (2006) 253–277.
[10] Andrea De Lucia,Anna Rita Fasolino and Malcolm Munro “Understanding Function Behaviors through Program Slicing”1996,IEEE,

pp. 9-18.
[11] Heung Seok Chae, Yong Rae Kwon and Doo Hwan Bae “A Cohesion measure for Object-Oriented Classes, Softw. Pract. Exper. 2000;

30:1405–1431.
[12] Norihiro Yoshida, Masataka Kinoshita, Hajimu Iida “A cohesion metric approach to dividing source code into functional segments to

improve maintainability” 2012 16th European Conference on Software Maintenance and Reengineering.
[13] David Bowes, Tracy Hall and Andrew Kerr “Program Slicing Based-Cohesion Measurement: The Challenges of Replicating Studies

Using Metrics” Proceeding WETSoM '11 Proceedings of the 2nd International Workshop on Emerging Trends in Software Metrics
Pages 75-80 ACM New York, NY, USA ©2011.

[14] L. Ott and J. Thuss. Slice based metrics for estimating cohesion. In Proceedings of the First Intetnationl Software Metrics Symposium,
pages 71 –81, 1993 .

[15] Weyuker. J. E. “Evaluating Software Complexity Measures”, IEEE Trans. on Software Engineering, 14, 1998, 1357-1365.
[16] Chidamber and Kemerer “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, VOL. 20, NO. 6,

JUNE 1994.

Kumar Rajnish et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.03 May 2015 101

	Analyzing Slicing of Program throughCohesion Metric
	Abstract
	I. INTRODUCTION
	II. WEYUKER’S PROPERTY
	III. EXISTING COHESION METRIC
	IV. PROPOSE SLICING COHESION METRIC
	V. RESULTS AND DISCUSSION
	VI. CONCLUSION AND FUTURE WORK
	References

