
Scalability of architecture for large-scale
software systems

Prajnya B Prabhu, Anusha M, Aparna Joshi, Anisha J Prasad, Nagaraj G Cholli

Department of Information Science and Engineering,
R V College of Engineering,

Bengaluru, India.

Abstract

Software systems today run on servers where multiple clients access the service. Large-scale software systems
have different requirements like security, scalability, dependability, maintainability, reliability and performance.
This paper focuses on scalability requirement of large-scale software systems. Scalability is the ability of the
system to manage the growing load in a capable way. Comparison is done among different distributed file
systems which are largely used. A difference between two caching mechanisms is brought out. Depending on
the requirements and applications, appropriate caching technique and distributed file system can be
implemented.

Keywords-Large-scale system; Scalability; file system; NoSQL; map-reduce; caching

I. INTRODUCTION

A large scale system is one which stores, accesses, processes a large amount of data, and contains numerous
hardware elements and a large number of people involved. One of the major requirements of large-scale system
is scalability. Scalability has two types; if a system is completely replaced by a new system which is better and
powerful than the existing system, then it is known as vertical scalability and if the existing system is enhanced
by adding more elements to it, then it is known as horizontal scalability. A good analogy is to view the large-
scale system as a function which grows continuously over time. The complete architecture of a large-scale
software system is not laid in the beginning because large scale software systems are evolutionary. Hence, as
and when the requirements arise enhancements are made to the underlying components or new elements are
added to the system.

Characteristics of large-scale system:

 Infinite duration of life

 changing flow of information and new sources keep joining

 Unknown, changeable, fluctuating boundaries

 highly complex

There are few basic components that are needed for a large-scale system. They are:

A. File systems

Storing and accessing files is based on the client/server architecture. In traditional systems, files were
organized in a single hard disk drive or physical media. Distributed file systems (DFS) spread the files or the
system’s data over multiple disks or machines (nodes). The need to reduce fault tolerance of the node cluster,
improve data consistency and the management of the metadata lead to different DFS designs. Most of the DFSs
follow master- slave architecture, where one server is elected as the master server, which mainly consists of
metadata, and a number of slave servers which consists of data. That is, the master server will have the
information about the files and its mappings, and the slave servers will contain the contents of the file. DFSs
uses data replication mechanism to fulfil availability and reduce fault tolerance. Appropriate locking
mechanisms are employed for different DFSs to provide synchronization and valid data read and update.

B. Database

A large-scale system needs a database to store all its data. As large-scale systems are evolutionary, the
system and the database need to be scalable. The relational database hinders data evolution which causes a
problem while scaling across the clusters. In the past decade a database named NoSQL (Not only SQL)
emerged. NoSQL databases are non-relational, open source, distributed and horizontally scalable databases [2].
Relational databases follow ACID properties: Atomicity, Consistency, Isolation and Durability whereas NoSQL
follows BASE properties: Basically Available, Soft state and Eventual consistency. Basically Available means
that NoSQL uses replication and sharding to prevent data unavailability. Soft state means that the state of the
system may change after some time. Eventually consistent means that the data soon after the transaction may
not be consistent, but later at some point of time, it will be consistent.

Prajnya B Prabhu et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.04 Jul 2015 178

C. Map-reduce algorithm

Major application of map-reduce algorithm lies in the implementation of Hadoop frame work. This frame
work is used for scaling the large systems. Hadoop has been developed to work with large clusters having more
than thousands of nodes, and consists of two parts namely: Map Reduce and Hadoop distributed file systems
(HDFS). HDFS is a highly scalable and reliable distributed file system, which is needed for managing large
amount of data, and such file system is needed by map reduce algorithm to make to software system more
scalable. The architecture of Hadoop consists of one master node and several slave nodes. The master node
manages these slave nodes to store data, in addition to which it also plays a role in storing data. Master node
usually saves Meta data which gives description about the organization of file system. Hence the capability of a
cluster in HDFS is based on the memory size of the master node (Name node). The HDFS splits data into
individual fragments and stores them in clusters. These clusters store each data fragment into two different
racks. Two copies in one rack and one copy in a different rack. This way even if data from one rack is lost, it
could be recovered from other racks, this addresses important feature, security of information.

D. Caching

Caching is an important parameter that enhances performance and scalability of large scale systems. Caching
provides fast retrieval of data. Recently and frequently used data are stored in cache. In the hardware, cache
memory is provided near the CPU and in the software, caching is used in browsers. Open-source distance
memory caching technologies such as Memcached and Redis are used by many of the large scale systems
worldwide. Distributed caching helps in scaling an application horizontally by reducing database access and
making required data available locally in the cache. A commonly followed pattern is query result caching.

II. LITERATURE REVIEW

In Architecture of Large Scale Systems [1], the definitions and difference between traditional systems
and large scale systems are given. The requirements for a large-scale system, taking Facebook as an example are
discussed by the authors. The basic components which make up the large-scale system are file systems,
databases, mapreduce algorithm, and caching. The file systems which are mainly used are distributed file
systems. A new database called NoSQL is extensively being used for large-scale systems. Hadoop is a
framework which uses mapreduce algorithm. Caching is a way to temporarily store data for fast retrieval. The
paper discusses the horizontal scalability of large scale systems using the basic components.

NoSQL databases [2] are non-relational database management systems, but are basically derived from
RDB database systems. NoSQL databases are used where scalability is one of the main aspects as they are
designed to run on distributed systems. They follow BASE properties. The components and data store types
required for data architecture in NoSQL are discussed briefly.

There are various available DFS designs out there and the paper [3] deals with the most important ones
addressing the fault tolerance, data consistency and metadata maintenance of the file system. As the data and the
computing ability increases, a robust file system with impeccable performance, availability, reliability and
scalability are to be chosen. A brief analysis of the considered file systems are done and according to our
requirements, the best among the lot is to be selected is what the author wants to convey.

HDFS results in a lot of energy consumption to keep the system running. The paper [4] introduces a
new file system named GreenHDFS which consists of two data node zones, the cold zone and the hot zone. The
cold zone consists of less frequently used files and the corresponding server would be in sleep mode by default.
The hot zone makes up the more frequently accessed files. Due to the sleep mode of the cold zone data nodes,
there is high energy savings of the system resulting in less energy costs.

The paper [5] describes the design and implementation of the Sector storage and the Sphere compute
cloud. Sector storage is not only available to the data centres but it’s also scalable to a geographically distributed
data centres. Security mechanisms for DFS has become a major problem and this is addressed to a considerable
extent by incorporating security servers that provide access to authorized clients only. The master node would
check for the authenticity of the client and establish a connection with it for data transfer.

The map reduce for big data analysis [6], a distributed file system (DFS) to achieve scalability of data
and utilization of map reduce algorithm to incorporate DFS is addressed. MapReduce implemented by Google is
an open source frame work equivalent to Hadoop frame work. The data in DFS is partitioned and this data is
represented as (key, value) pairs. In Map function, different partitions of data are processed and sorted in order,
and the output of each (key, value) pair is merged using a unique hash function. The Reduce function is then
invoked which for every key and its output is stored in DFS. The pre-processing is done using Map and post
processing using Reduce.

Efficient analysis of big data [7], the difficulties in addressing big data and obtaining useful
information from it is studied. This data is so large, the traditional databases and techniques cannot be applied.
Analysing big data is a huge challenge, as it needs the researchers to recognize hidden patterns, relations and
extricate useful information and stores them efficiently. HDFS is designed specially to handle big data and use it
in drawing important conclusions, which in turn uses Map-Reduce algorithm for processing data.

Prajnya B Prabhu et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.04 Jul 2015 179

Paper [8], deals with various caching issues from the pattern perspective. Primed caching pattern and
demand cache pattern are the two main classifications. Primed is useful when a part of the data set can be
predicted and demand, when it cannot be. The pros of both are combined in a flexible implementation.

The Google File System (GFS) [9] has been implemented at Google as the storage platform and for the
processing of data. GFS is scalable, fault tolerant and runs on inexpensive commodity. The authors have given
the detailed description of the architecture and have discussed the challenges faced during design, such as
component failures, huge files, file mutation and co-designing applications.

III. COMPARISON BETWEEN DIFFERENT DISTRIBUTED FILE SYSTEMS

Scalability in file systems can be achieved by using distributed file systems. Some of the features of
distributed file systems are reliability, availability, fault tolerance and efficiency. Four distributed file systems
which are of interest are compared in TABLE I.

GFS consists of a master node that maintains metadata of all chunks and the mapping from the file to
chunks. Whenever a client makes a request to the master node, the master node sends metadata to the client. The
client would then establish a connection with the appropriate server for data transfer. The data is triple
duplicated, so that when a chunkserver fails, the master node can redirect the client to other chunkserver which
contains the duplicated data. The master contains all metadata such as access control information, mapping from
files to chunks and the locations of the chunk servers. If the master fails, then all the chunkservers are scanned
to obtain the metadata and a new master server is elected. HDFS is an open source version of GFS. There are
different variants of HDFS such as Ring File System (RFS), GreenHDFS, Efficient Distributed File System
(EDFS) and Quantcast File System (QFS) [3]. The General Parallel File System (GPFS) is a centralized DFS
which is a parallel, shared disk file for cluster computers. It supports large amount of disks and distributed
locking is used for synchronization. GPFS elects a metanode at the centre to manage data about file data. If a
node fails, GPFS tries to restore the metadata from the failed node and frees all the resources captured by that
node. The sector is a DFS that provides security mechanisms which the other DFS fails to. It consists of a
master server, security server and a number of slave servers. The master and slave servers are the same like in
GFS. The security server connected to the master is used to authorize the access to the distributed data. The
master node can open a connection with a client who has an authorized access for the data transfer. Security
servers are basically used to maintain user accounts, file access information and others.

IV. CACHING PATTERNS

Caching is a process where the recently accessed data are stored in and retrieved from the cache memory.
Caching pattern describes how to store and reuse resources by effectively storing and retrieving in a faster way
to improve performance. Two caching patterns- primed cache and demand cache are compared in TABLE II.

TABLE I COMPARISON BETWEEN DIFFERENT DISTRIBUTED FILE SYSTEMS

Name GFS HDFS GPFS Sector

Scalability Scalable Scalable Extreme Scalability Scalable

Performance Good Performance High Throughput High Performance High Performance
(2-4 times faster

than HDFS)
Fault Tolerance Fault Tolerant Highly Fault

Tolerant
Low Fault Tolerant File-system level

Fault Tolerance
Architecture Master slave Master slave Shared Disk File

System
Master (one or
more), Security

server and number
of slaves

Data Duplication Data is triple
replicated

Data is preferably
replicated thrice in

racks

Data is only
duplicated by

RAID

Data is triple
replicated

Data set divided
into

Fixed 64 MB
chunk size blocks

Preferably 128 MB
blocks

256 KB block size
by default

Data is stored as
File

Developer Google Yahoo IBM Dr. Yunhong Gu

Prajnya B Prabhu et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.04 Jul 2015 180

TABLE II DIFFERENCES BETWEEN CACHING PATTERN

Pattern Primed Cache Demand Cache

Applicability Cache is populated with predicted
set of data

 Useful for predictable, frequently
read data

 Cache is populated on
demand i.e as and when data
is requested by applications

 Useful for unpredictable,
frequently read data

Advantages Reduced data access overhead
 Optimised cached data set

 Quick initialisation
 Minimum cached data sets

Disadvantages Semantics involved in pre-
populating

 Possibility of memory leaks

 Slow cache population
 Possibility of memory leaks

The Primed caching pattern populates the cache with a predicted set of data whereas the Demand caching
pattern populates the data dynamically that is on demand. Pre-populating the data in primed cache will lead to
fast retrieval of data but populating the data in the cache is expensive as the data needs to be carefully selected
to be stored in the cache. In Demand cache, the data population is a slower process as they are saved in cache as
and when data is requested.

V. CONCLUSION

Large scale systems can be referred as system of systems. Technology today is growing at a rapid rate and for
a new emergent technology, the large scale system cannot be built from the scratch. The reason, being the time
constraint. Because by the time we develop the system, some other new technology and requirements would
arise. Hence the systems are built such that they are scalable in every dimension. Scalability can be best
achieved by using distributed systems.

This paper gives an insight on the different components that can be used for the architecture of a large scale
system. Some distributed file systems –GFS, HDFS, GPFS and Sector- are compared based on their design and
features.

REFERENCES
[1] Arne Koschel, Irina Astrova, Elena Deutschkämer, Jacob Ester, Johannes Feldmann, “Architecture of Large-Scale Systems”, World

Academy of Science, Engineering and Technology International Journal of Computer, Information, Systems and Control Engineering,
2013

[2] Vatika Sharma, Meenu Dave, “SQL and NoSQL Databases”, International Journal of Advanced Research in Computer Science and
Software Engineering, ISSN: 2277128X, August 2012.

[3] Yuduo Zhou, “Large scale distributed file system survey”, Indiana University Bloomington.
[4] R.T Kaushik and M. Bhandarkar. “GreenHDFS: Towards an energy-conserving, storage efficient, hybrid Hadoop compute cluster”,

Hot Power, 2010.
[5] Yunhong Gu, Robert L Grossman, “Sector and Sphere: The Design and Implementation of a High Performance Data Cloud”,

University of Illinois at Chicago and Open Data Group.
[6] Kyuseok Shim, “Map-Reduce Algorithms for Big Data Analysis”, Seoul National University.
[7] Siddaraju, Sowmya C, Rashmi K, Rahul M, “Efficient Analysis of Big Data Using Map Reduce Framework”, DrInternational Journal

of Recent Development in Engineering and Technology, June 2014.
[8] Octavian Paul ROTARU, “Caching Patterns and Implementation”, Computer Science and Engineering Department, "Politehnica"

University of Bucharest, January-June 2006.
[9] Sanjay Ghemawat, Howard Gobioff, Shan- Tak Leung, “The Google File System”, Google, October 19-22, 2003.

Prajnya B Prabhu et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 4 No.04 Jul 2015 181

	Scalability of architecture for large-scalesoftware systems
	Abstract
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. COMPARISON BETWEEN DIFFERENT DISTRIBUTED FILE SYSTEMS
	IV. CACHING PATTERNS
	V. CONCLUSION
	REFERENCES

