
Efficient construction of Optimal Binary
Search Trees using Data Preprocessing to

improve Quality and Attribute Post
computing to save Space and time through

modified Dynamic Programming
Technique
S.Hrushikesava Raju1,

Associate Professor,
SIETK, NarayanaVanam Road, Puttur,A.P.

hkesavaraju@gmail.com

Dr. T.Swarna Latha2,
Professor,

Narayana Engineering College,Gudur, A.P.
proftswarnalatha@gmail.com

Abstract

There are various methods of handling Optimal Binary search trees in order to improve the performance. One of
the methods is Dynamic programming which incurs O(n3) time complexity to store involved computations in a
table. The data mining technique called Data Preprocessing is used
to remove noise early in the data and enhance consistency of given data. The data postcomputing (opposite to
Data Preprocessing) is applied using dynamic programming principle which starts with only required data and
computes only the necessary attributes required to construct Optimal Binary Search Tree with time complexity
O(n) if there are n identifiers / integers / any complex objects. This approach avoids computing all table
attributes. Hence, the complexity or cost of Data post computing using Dynamic Programming is proved to be
less than O(n3) or even less than specified in some cases with experimental results.
Keywords: Optimal Binary Search Tree (OBST), Data Preprocessing, Post computing, Dynamic Programming,
Time Complexity.

I. Introduction

Optimal Binary search Tree is a variety of binary trees in which each node stores maximum of two children and
it stores strings as identifiers within it or integers or any complex object as nodes of this binary tree. There were
many methods such as greedy, recursion, memorizing are useful to do this work. One of those methods is that
randomly drawing all possible binary trees and finds a particular binary tree whose cost is low and considers
that as an OBST. The name optimal binary search tree is titled because of simple reason that is finding a key in a
tree incurs least number of comparisons. In this method, the optimal binary search tree is chosen in the possible
binary trees which involve minimum cost for searching a key in the tree. There are also Greedy, Memorizing,
0/1 knapsack problem, multiple chain multiplication used but they are not efficient because they are all use
strategy recursion and another drawback is
solutions are not helpful to compute larger problem solution. Dynamic programming is a popular and efficient
method to construct binary search tree by following principles such as saving sub problem solutions, reusing sub
problem solutions to construct solution for larger problems, and also it avoid using of recursion strategy.
Dynamic programming unnecessarily stores all computations in memory and involves O(n3) complexity and it is
applied on any data that is irrelevant or in improper manner. Hence, A data mining technique named data
preprocessing is used to sort or clean the given sequence. Also, a technique is proposed titled Data Post
computing using Dynamic Programming concept is performed that only computes required attributes which are
required to construct optimal binary search trees. This second step leads to compute some more low level
attributes in order to compute that particular attribute.

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 40

II. Related Work

 There are many methods involved to construct the optimal Binary search trees (OBST). First approach
[4,8,9] called randomization which constructs many binary search trees in order to find out an OBST that has
minimum cost. The cost can be calculated by multiplying the key and frequency of that node. This approach has
a drawback that wastage of time in computing unnecessary trees in addition to correct tree.
Second approach named Computing OBST using sets[6] arranges elements in a tree using recursive approach in
which computing optimal substructures and overlapping sub-problems is became expensive(exponential nature)
in terms of computing same sub-problems again and again. This issue is sorted in Using Dynamic Programming
by a temporary array in a bottom up manner.
Third approach is Greedy recursive approach [7, 8] which initially finds root through best heuristic using
recursion and it applies to remaining elements for computing sub trees. This leads sometimes not a OBST
although root of each sub tree is optimal.
To overcome these flaws, Dynamic programming[8,9] is introduced which split the given problem into small
instances, proposed algorithm applied to all, later integrate them into a large solution for the given problem. The
advantage of dynamic programming is flexibility in integrating the sub problems and each solution takes a space
in memory and solution is obtained using recurrence formulas. But still, some refinement is possible on this
work that is refinement of DP algorithm is required which reduce the unnecessary computations. This reduces
space in a table in storing the elements as well as computations done in less time compared to other techniques.
This work can be done in the proposed work where detailed steps are given.
The techniques are summarized in the following table.

Table 1: details of each technique used for OBST

Technique Advantage Disadvantage

Randomization Simple, easy and
mandatory task

Takes more time in giving right tree with
minimum cost

Using sets Optimal sub-structures Expensive in avoiding overlapping sub-
problems

Greedy Guarantee the optimal in
each case

Using Recursion cause

Traditional Dynamic
Programming

Giving a tree optimally Leads many Unnecessary computations

Proposed Dynamic
Programming

Gives a tree optimally
with little time complexity

NIL

III. Proposed Work

 Consider the given data elements are as a1,a2,a3, …., an-1,and an. These labels denote the keywords in
the given data. Suppose the raw data is given, which can be classified into the text keywords, individual
characters, and numeric data. For numeric data, it is easy to construct binary search tree by using rules such as
left node element should be less than root node and right sub tree element should be greater than root element
and this procedure is repeated until last element in the given data is processed.
For alphabets, it is also easy to construct binary search trees by using same logic but left sub tree element is
alphabetically comes before the root element, the tight sub tree element is alphabetically comes after the root
element, and this procedure is applied till last character is processed. For text keywords to make as an OBST,
there are predefined procedures also called algorithms which pick the root node first by a notation tij which is the
last level calculation that helps to pick the root node which can be indexed by the rank value calculated using
DP_OBST algorithm. From this notation tij, root can be picked using the rank r which takes ar element in the
given data. The sub trees in the next low level are taken based on this rank r. The first level sub trees are tir-1 (left
sub tree) and trj (right sub tree). The second level nodes can be estimated from tir-1 and trj. The rank of entry (i,r-
1=k) is r1 assume. The sub trees of this are tir1-1(left sub tree) and right sub tree tr1k (right sub tree). Assume the
rank of first level right sub tree is r2. The sub trees of tr=ij are tir2-1 and tr2j. This is repeated until all elements in
the given data are taken a place in the tree.
The following are the procedures to process the data and construct the OBST from the category of data like
numeric, individual characters (alphabets), and text words.
A. Irrespective of the category of data, this is going to be applied on the raw data.
Procedure DP_OBST(string text[])
Take three arrays one for numeric- num[], second for alphabets – letter[], third for text words – words[]

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 41

Take three indexes m,n,l
 1. read the data based on spaces.
 2. while reading, check the following conditions
 if(sizeof(text[i])== 1 && isalpha(text[i]))
 {
 letter[n]=text[i]
 n++;
 }
 if(sizeof(text[i])==1 && isdigit(text[i]))
 {
 num[m]=text[i];
 m++;
 }
 if(sizeof(text[i])>1)
 {
 words[l]=text[i];
 l++;
 }
 3. Now, raw data classified into the their allocated arrays.
A.1 For numeric, and alphabet data, the procedure to construct OBST is same as general approach which is
given as follows:

Procedure OBST_Numeric_and_alphabets(num[] / letter[])

1. take first node as root.
2. take second element, compare it with root value. If it is same, override it. If it is lessthan the root, make as left
child of it. if it is greater than the root, make it as right child. Assume num[i] / letter[i] is value. Use also pointer
concept.
struct node
{
struct node *leftptr;
struct node *rightptr;
int or char value;
}
if(root==NULL)
root=value;
else
{
if(root==value)
skip this iteration
if(value < root)
{
root->leftptr=value;
OBST_Numeric_and_alphabets(root->leftptr);

}
if(value > root)
{
root->rightptr=value;
OBST_Numeric_and_alphabets(root->rightptr);

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 42

}
3. This is repeated until last element is processed.

A.2 But for the textual words, the optimal binary search tree is going be constructed in the bottom up manner
using the Dynamic programming formulae.
To do this, the normal calculation of Dynamic Programming is recapped here.
Procedure of DP()
The formula for computing weight, cost, and rank are:
w(i,j) = p(j)+q(j)+w(i,j-1)
c(i,j) = w(i,j) + min i<k<j {c[i,k-1]+c[k,j]}
r(i,j) = k that minimizes the c(i,j)

1. Take the initial values of costs, weights, ranks are 0.
2. This procedure calculates many unnecessary attributes in which relevant attributes are also existing
For i:=0 to n-1 do
w[i,i] := q[i]; r[i,i] = 0; c[i,i] =0;
// Optimal tree with one node
 w[i,i+1] := q[i] + q[i+1] + p[i+1];
 r[i,i+1] := i+1
 c[i,i+1] := q[i] + q[i+1] + p[i+1]; }
 For m:=2 to n do
 // find optimal trees with m nodes
 For i:=0 to n-m do {
 j := i+m;
 w[i,j] := w[i,j-1] + p[j] +q[j];
 k := find(c,r,i,j);
 //it returns the value to the k that minimizes the c
 c[i,j] := w[i,j] + c[i,k-1]+c[k,j];
 r[i,j] := k; } }

 3. From the obtained table of entries, some entries are picked based on rank which has a relation to next level
computations
 4. Based on Knowledge of Proposed work, OBST for textual words is going to be constructed.

B. By taking this as base, the logic is rewritten in order to reduce unnecessary computations. The following
procedure reduces waste computations;

1. Take the initial weights, costs, and ranks are zero.
 w[i,i] := q[i]; r[i,i] = 0; c[i,i] =0;
2. Call rank of last level computation because which helps to pick root node.
 Assume the sub procedure named finding_rank_forij
Procedure finding_rank_forij(i,j)
{
w[i,j]= ∑ i & j >0 w[i,j-1]+p[j]+q[j];
c[i,j] = w[i,j]+ min i<k<j c[i,k-1] + c[k,j];
return k
}
3. Call the calculation of weight and cost of only related entries (i,j)
The sub procedure named calculate_w&c(i,j)
Procedure calculate_w&c(i,j)
{

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 43

For i=r to 0 do
 w[i,i+1] := q[i] + q[i+1] + p[i+1];
 r[i,i+1] := i+1
 c[i,i+1] := q[i] + q[i+1] + p[i+1]; }
4. Now only relevant weights and costs are calculated in bottom up fashion from present level to zeroth level to
get final value for their attributes. These values helpful to know the rank and element with rank as index takes
right position in the OBST.

The following is the flowchart which demonstrates the OBST in bottom up fashion from last level to initial level
which reduce unnecessary computations.

Fig. 1: Procedure for constructing OBST using Dynamic Programming knowledge

IV. Experimental Results

 The results are taken by considering some real sample example scenarios.
Example: Take a set (do, if, int, while), Let p(1: 4) = (3, 3, 1, 1) and q(0: 4) = (2, 3, 1, 1, 1).
The following table shows the comparison between traditional Dynamic Programming and Proposed Dynamic
Programming using Data Preprocessing and Post Computing from bottom up manner.

Technique Space Time

Traditional Dynamic Programming 45 * sizeof(data) O(15*3)=45)

Proposed Dynamic Programming using
Data preprocessing and post computing in
bottom up manner

4 * sizeof(data)

O(4 * 3 + 5 for initial
variables + some
intermediate variables but
not all variables) < 45

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 44

The following table shows the calculations using traditional Dynamic Programming

j 0 1 2 3 4

i

0

w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1

w01 = 8

c01 = 8

r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3

c34 = 3

r34 = 4

2

w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5

c24 = 8

r24 = 3

3

w03 = 14
c03 = 25
r03 = 2

w14 = 11
c14 = 19
r14 = 2

4

w04 = 19

c04 = 32

r04 = 2

From above table, only bolded entries are required to construct OBST. There are some attributes need to be
computed in calculating the required attribute. In this way, computing of some unnecessary attributes are going
be avoided using Proposed Dynamic Programming using Data Preprocessing and bottom up post computing
method.
By observing a simple example, the complexity is more. If You the data set is large, huge number of entries to
be computed in a dynamic programming table which not only leads to occupying space and also huge time. To
avoid this overhead, Proposed technique named Modified Dynamic programming using Data Preprocessing and
attribute post computing in bottom up fashion from last level to first level depending on required attributes.
The following is also a graph that shows efficiency of the traditional and proposed Techniques:

Fig.2: Efficiency of Traditional and Proposed Techniques

V. Conclusion

 This approach is very useful early in
removing redundancy and later as saving space in terms of not to compute unnecessary attributes using
Dynamic Programming Approach. The results described through examples shown that some space is reduced
and also minimized the time to construct binary search tree. This approach may be extended in future using
either backtracking or any latest designed algorithm to get better time efficiency.

References
[1] “Data Mining: Concepts and Techniques” by Micheline Kamber, Hei, Second Edition.
[2] iasri.res.in/ebook/win_school_aa/notes/ Data_Preprocessing.pdf
[3] www.mimuw.edu.pl/~son/datamining/DM/ 4-preprocess.pdf
[4] http://www.cse.yorku.ca/~andy/courses/3101/lecture-notes /OptBST.pdf

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 45

[5] http://fileadmin.cs.lth.se/cs/Personal/Rolf_Karlsson/lect5.pdf
[6] http://www.geeksforgeeks.org/dynamic- program ming-set-24-optimal-binary-search-tree/
[7] http://www.sciencedirect.com/science/article/pii/ 0020019081901435
[8] “Fundamentals of data structures in C++” By E.Horotiwz, S.Sahni, Dinesh Mehta, Second Edition.
[9] http://vitconference.com/vit_mca/images/resources/ DAOA/Fundamentals-of-Computer-Algorithms- By-Ellis-Horowitz-1984.pdf
[10] http://www.radford.edu/~nokie/classes/360/ dp-opt-bst.html
[11] http://www.cs.utsa.edu/~bylander/cs3343 /chapter8handout.pdf
[12] https://en.wikipedia.org/wiki/Optimal_binary _search _tree
[13] http://www.cs.ccsu.edu/~markov/ccsu_courses/ datamining-3.html
[14] http://iasri.res.in/ebook/win_school_aa/notes/ Data_Preprocessing.pdf
[15] http://staffwww.itn.liu.se/~aidvi/courses/06/dm/ lectures/lec2.pdf
[16] “Data Preprocessing in Data Mining” by Salvadar Garcia, Julian Luengo, Francisco Hurrera, ISBN : 9783319102474 &

9783319102467.

About Authors:

 Mr. S. HrushiKesava Raju, working as Associate Professor in the Dept. of CSE,
SIETK, Narayanavanam Road, Puttur. He is persuing Ph.D from Raylaseema
University in area Data Mining tasks on advanced Data Structures. His areas of interest
are Data Mining, Data Structures, and Networks.

Dr. T. Swarna Latha, working as HOD and Professor in the Dept. of CSE, Narayana
Engineering College, Gudur, A.P.. She had completed Ph.D from S.V. University in
area Network Security. She is presently guiding many scholars in various disciplines.

S.Hrushikesava Raju et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.01 Jan 2016 46

	Efficient construction of Optimal BinarySearch Trees using Data Preprocessing toimprove Quality and Attribute Postcomputing to save Space and time throughmodified Dynamic ProgrammingTechnique
	Abstract
	I. Introduction
	II. Related Work
	III. Proposed Work
	IV. Experimental Results
	V. Conclusion
	References
	About Authors:

