
Improved Delegation Of Computation
Using Somewhat Homomorphic Encryption

To Reduce Storage Space

Dhivya.S (PG Scholar)
M.E Computer Science and Engineering

Institute of Road and Transport Technology
Erode, TamilNadu

dhivyashanthi10@gmail.com

Venkatachalam.G (Associate Professor)
M.E Computer Science and Engineering

Institute of Road and Transport Technology
Erode, TamilNadu

Abstract-- Fully Homomorphic Encryption scheme is far from being practical because of its large
computational cost and large cipher texts. Since then, considerable efforts have been made to devise more
efficient schemes. However, most Fully Homomorphic Encryption schemes still have very large cipher
texts. This presents a considerable bottleneck in practical deployments. It becomes more important to
protect the data from misuse by insiders or hacking by outsiders. To reduce the risk, the data may be
encrypted prior to storage. Under this scenario, we give an efficient storage solution using a hybrid
scheme. Our hybrid scheme can be used to protect the privacy, i.e., the computations of Public Key
Encryption-encrypted data are outsourced, along with Hybrid to a cloud that has huge computing power
and storage. The cloud performs the outsourced computations, and returns the resulting cipher text
encrypted under Somewhat Homomorphic Encryption.

I. INTRODUCTION

A. Motivation of the Project

The concept of computation on encrypted data without decryption was first introduced by
Rivest, Adleman and Dertouzos in 1978. Thirty years later, Gentry proposed a fully homomorphic
encryption (FHE) based on ideal lattices.

This scheme is far from being practical because of its large computational cost and large
ciphertexts. Since then, considerable efforts have been made to devise more efficient schemes.
However, most FHE schemes still have very large ciphertexts (millions of bits for a single ciphertext).
This presents a considerable bottleneck in practical deployments. The following situations are
considered: several users upload data encrypted with a public-key FHE, a server carries out
computations on the encrypted data and then sends them to an agency who has a decryption key for the
FHE.This is common in typical FHE scenarios, such as medical and financial applications. In this
situation, one approach to reduce the storage requirement is to use AES encryption to encrypt data, and
then perform homomorphic computations on ciphertexts after converting to FHE-ciphertexts. This
method has a great advantage in storage and communication, because only small AES-ciphertexts are
transmitted from user to server, and these are homomorphically decrypted only when their
homomorphic computations are required.

In this paper, an alternative method that encrypts messages with a public key encryption
(PKE) and converts them into SHE-ciphertexts for homomorphic computations. In this approach, the
ciphertext expansion ratio is only two or three regardless of the message size.

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 85

B. Network Security

Network security consists of the provisions and policies adopted by a network
administrator to prevent and monitor unauthorized access, misuse, modification, or denial of
a computer network and network-accessible resources. Network security involves the authorization of
access to data in a network, which is controlled by the network administrator. Users choose or are
assigned an ID and password or other authenticating information that allows them access to
information and programs within their authority. It secures the network, as well as protecting and
overseeing operations being done. The most common and simple way of protecting a network resource
is by assigning it a unique name and a corresponding password.

C. Fundamentals of Cryptography

Encryption schemes are broadly of two types: symmetric and asymmetric encryption schemes.
Symmetric encryption schemes: This implies that in order to communicate with different

persons, different key for each person is used. Requirement of a large number of keys in these schemes
makes their key generation and management relatively more complex operations. However, symmetric
schemes present the advantage of being very fast and they are used in applications where speed of
execution is a paramount requirement. Among the existing symmetric encryption systems, AES, One-
Time Pad and Snow are very popular.

Asymmetric encryption schemes: In these schemes, every participant has a pair of keys
private and public. While the private key of a person is known to only her, the public key of each
participant is known to everyone in the group. Such schemes are more secure than their symmetric
counterparts and they don’t need any prior agreement between the communicating parties on a
common key before establishing a session of communication. RSA and ElGamal are two most popular
asymmetric encryption systems.

D. Applications of Homomorphisms

Protection of mobile agents: One of the most interesting applications of homomorphic encryption is
its use in protection of mobile agents. Since all conventional computer architectures are based on
binary strings and only require multiplication and addition, such homomorphic cryptosystems would
offer the possibility to encrypt a whole program so that it is still executable.
The protection of mobile agents by homomorphic encryption can be used in two ways:

(i) Computing with encrypted functions and
(ii) Computing with encrypted data.

Computation with encrypted functions is a special case of protection of mobile agents. In such
scenarios, a secret function is publicly evaluated in such a way that the function remains secret. Using
homomorphic cryptosystems, the encrypted function can be evaluated which guarantees its privacy.
Homomorphic schemes also work on encrypted data to compute publicly while maintaining the privacy
of the secret data. This can be done encrypting the data in advance and then exploiting the
homomorphic property to compete with encrypted data.
Secret sharing scheme: In secret sharing schemes, parties share a secret so that no individual party can
reconstruct the secret form the information available to it. However, if some parties cooperate with
each other, they may be able to reconstruct the secret. In this scenario, the homomorphic property
implies that the composition of the shares of the secret is equivalent to the shares of the composition of
the secrets.
Election schemes: In election schemes, the homomorphic property provides a tool to obtain the tally
given the encrypted votes without decrypting the individual votes.
Watermarking and fingerprinting schemes: Digital watermarking and fingerprinting schemes embed
additional information into digital data. The homomorphic property is used to add a mark to previously
encrypted data. In general, watermarks are used to identify the owner/seller of digital goods to ensure
the copyright. In fingerprinting schemes, the person who buys the data should be identified by the
merchant to ensure that data is not illegally redistributed.
Zero-knowledge proofs: This is a fundamental primitive of cryptographic protocols and serves as an
example of a theoretical application of homomorphic cryptosystems. Zero-knowledge proofs are used
to prove knowledge of any private information. For instance, consider the case where a user has to
prove his identity to a host by logging in with her account and private password.

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 86

E. Project Description

In this work explore an alternative method that encrypts messages with a public key
encryption (PKE) and converts them into SHE-ciphertexts for homomorphic computations. In this
approach, the ciphertext expansion ratio is only two or three regardless of the message size. Moreover,
the decryption circuit is very shallow when the SHE allows large integers as messages. For example,
the decryption circuit of ElGamal over ZN has a multiplicative depth of nine under a SHE with the
message space ZN.2 The depth can be further reduced by representing the secret exponent e as logw e
binary vectors of length w, which is an improvement over the Gentry-Halevi technique. When using
additive (resp. Multiplier) homomorphic encryption as the underlying PKEs, the additional advantage
that additions (resp. Multiplications) can be computed without converting to SHE is obtained.

F. Objective

To reduce the storage space in the cloud environment this approach is used. In this work
includes small bandwidth, reduced storage requirements, and computational efficiency.

II. EXISTING SYSTEM

Several users upload data encrypted with a public-key FHE, a server carries out computations on the
encrypted data and then sends them to an agency who has a decryption key for the FHE. This is common in
typical FHE scenarios, such as medical and financial applications. In this situation, one approach to reduce the
storage requirement is to use AES encryption to encrypt data, and then perform homomorphic computations on
ciphertexts after converting to FHE-ciphertexts. This method has a great advantage in storage and
communication, because only small AES-ciphertexts are transmitted from user to server, and these are
homomorphically decrypted only when their homomorphic computations are required. However, this approach
is not practical when the amount of messages transmitted simultaneously is small compared with the size of an
FHE ciphertext. Moreover, the conversion on AES-ciphertexts into FHE-ciphertexts requires a leveled FHE
with a multiplicative depth of at least forty.

Disadvantages:

 It's not efficient in using cloud environment.
 Take a large space in the storage requirement.
 Very slow process.

III. PROPOSED SYSTEM:

In this work explore an alternative method that encrypts messages with a public key encryption (PKE)
and converts them into SHE-ciphertexts for homomorphic computations. In this approach, the ciphertext
expansion ratio is only two or three regardless of the message size. Moreover, the decryption circuit is very
shallow when the SHE allows large integers as messages. For example, the decryption circuit of ElGamal over
ZN has a multiplicative depth of nine under a SHE with the message space ZN.2 The depth can be reduced
further by representing the secret exponent e as logw e binary vectors of length w, which is an improvement
over the Gentry-Halevi technique. When using additive (resp. Multiplier) homomorphic encryption as the
underlying PKEs, the additional advantage that additions (resp. Multiplications) can be computed without
converting to SHE is obtained.

Advantages:

 It covert very large data as small message.
 This technique very useful in cloud and large data storage environment.
 High speed in data retrieval.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Architecture:

Systems design is simply the design of systems. It implies a systematic and rigorous approach to design
an approach demanded by the scale and complexity of many system problems. A systems approach to design is
entirely compatible with a user-centered approach. Indeed, the core of both approaches is understanding user
goals. A systems approach looks at users in relation to a context and in terms of their interaction with devices,
with each other, and with themselves. A systems approach to design is most appropriate for projects involving
large systems or systems of systems. Such projects typically involve many people, from many disciplines,
working together over an extended period of time. They need tools to cope with their project’s complexity: to
define goals, facilitate communications, and manage processes. Solo designers working on small projects may
find the same tools a bit cumbersome for their needs.

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 87

Fig 1. System Architecture

B. Module Description:

Modules:

1. User Login and Data Upload
2. User Data convert to Public Key Encryption (PKE)
3. PKE data convert to Somewhat Homomorphic Encryption (SHE)
4. Upload the file to Storage Environment

B.1. User Login and Data Upload

In this module each user registers their information and login to the process. The registered user
information can be stored in the app engine database. After that User uploads their file wants to store and file
size of the encryption process to reduce the storage requirements.

Fig 2. User Login and Data Upload

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 88

B.2. User Data convert to Public Key Encryption (PKE)

In this module user’s data are converted to an encrypted file by using public key encryption. The public
key encryption has been done through AES algorithm. First thing is generation of public keys. The Key
generation is basically done by choosing random prime numbers.

 Then the Process of AES algorithm the key value and user’s data are converted into cipher text form.
This encrypted file will be used for further processing. The encrypted file is large in size because of the key
values.

Fig 3. User Data convert to PKE

B.3. PKE Convert to Somewhat Homomorphic Encryption (SHE):

In this module the Public key encryption, data is converted into somewhat homomorphic encrypted
data using ElGamal Algorithm. The SHE (SomeWhat Homomorphic Encryption) key has been generated. This
key value and the PKE encrypted file are converted to somewhat homomorphic encryption . Finally the SHE
ciphertext is received. This process reduces the bit rate of file size.

Fig 4. PKE to SHE

B.4. Upload File to Storage Environment:

In this module user upload their chipper text file to the storage environment. The user has the very
small size of the chipper text file and which environment they want to store the data. If their retrieve the data to
see the original plaintext. Enter the correct key to decrypt the data.

Fig 5. Upload to Storage

Convert
the data
to PKE

Apply AES
algorithm

Generate key
value

User
data

Get the
encrypted
file

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 89

5.3 DATA FLOW DIAGRAM

Level 1:

Upload the user file

Encrypt the user
file

User Registration

Enter the user
Information

Generate the key for
PKE

 Start

APPLY PKE

Apply AES
technique

Stop

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 90

Level 2:

Fig 6. Data Flow Diagram(Level 2)

V. CONCLUSION AND FUTURE ENHANCEMENT

A. Conclusion:
 A hybrid scheme that combines public key encryption and somewhat homomorphic encryption is
proposed. The proposed scheme is suitable for cloud computing environments since it has small bandwidth, low
storage requirement, and supports efficient computing on encrypted data. The solution provides a trade-off
between the size of the transmitted ciphertexts and the conversion costs. While the ciphertext expansion of PKE
is larger than that of AES, it can be homomorphically evaluated with a SHE of much smaller multiplicative
depth. The parameters of the hybrid scheme are very large when the message space of the underlying FHE is
ZN. For an efficient implementation, a method to evaluate mod N arithmetic using an FHE whose message
space is ZM for small M > 2 is needed.

B. Future Enhancement:
 A hybrid scheme that combines public key encryption and somewhat homomorphic encryption is

proposed. The proposed scheme is suitable for cloud computing environments since it has small bandwidth, low
storage requirement, and supports efficient computing on encrypted data. But the decryption of the cipher text
data retrieval time too long. In future the technique for quickly decrypt the SHE encrypted data is enhanced.

Get the PKE
CHIPPERTEXT

Generate the key
for SHE

Apply SHE

Upload the file to
storage environment

Get the SHE
chipper text

Apply ElGamal
Technique

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 91

REFERENCES
[1] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. (2013). “A quasipolynomial algorithm for discrete logarithm infinite fields of small

characteristic.” [Online]. Available: http://eprint.iacr.org/2013/400
[2] J. H. Cheon et al., “Batch fully homomorphic encryption over the integers,” in Advances in Cryptology (Lecture Notes in Computer

Science), vol. 7881, T. Johansson and P. Nguyen, Eds. Berlin, Germany: Springer-Verlag, 2013, pp. 315–335.
[3] K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of computation using fully homomorphic encryption,” in Advances in

Cryptology (Lecture Notes in Computer Science), vol. 6223, T. Rabin, Ed. Berlin, Germany: Springer-Verlag, 2010, pp. 483–501.
[4] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully homomorphic encryption over the integers,” in Public-Key

Cryptography (Lecture Notes in Computer Science), H. Krawczyk, Ed. Berlin, Germany: Springer-Verlag, 2014, pp. 311–328.
[5] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” in Advances in Cryptology (Lecture

Notes in Computer Science), vol. 196, G. R. Blakley and D. Chaum, Eds. Berlin, Germany: Springer-Verlag, 1984, pp. 10–18.
[6] J. Fan and F. Vercauteren, “Somewhat practical, fully homomorphic encryption,” in Proc. IACR Cryptol., 2012, p. 144.
[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. 41st Annu. ACM Symp. Theory Comput. (STOC), 2009, pp.

169–178.
[8] C. Gentry and S. Halevi, “Fully homomorphic encryption without squashing using depth-3 arithmetic circuits,” in Proc. IEEE 52nd

Annu. Symp. Found. Comput. Sci. (FOCS), Oct. 2011, pp. 107–109.
[9] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit,” in Advances in Cryptology (Lecture Notes in

Computer Science), vol. 7417, R. Safavi-Naini and R. Canetti, Eds. Berlin, Germany: Springer-Verlag, 2012, pp. 850–867.
[10] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,” Found. Secure Comput., vol. 4, no. 11,

pp. 169–180, 1978.

Dhivya.S et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.2 Mar 2016 92

