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Abstract—Due to curse of dimensionality, there are various challenges to detect outliers in high-dimensional 
data. The distance concentration in high-dimensional data hinders the detection of outliers by making distance-
based methods label all points as almost equally good outliers. In this paper, we prove that such a view is quite 
simple; by showing that distance-based methods produce more conflicting outlier scores in high-dimensions. 
Moreover, we show that high dimensionality can have a different impact, by reexamining the reverse neighbors 
in the context of unsupervised outlier-detection. We provide awareness of how some points known as anti-hubs 
appear occasionally in k-NN lists of other points. We then describe the relation between anti-hubs and outliers. 
By figuring out the classic k-NN method, the angle-based methods for high-dimensional data and the density-
based local outlier factor on numerous synthetic and real-world data sets, we present novel insight into the 
efficiency of reverse neighbor counts in unsupervised outlier detection.  

Keywords— outlier, reverse neighbor counts, anti-hubs, curse of dimensionality. 
 

I. INTRODUCTION 
 In many data analysis tasks a large number of variables are being recorded or sampled. One of the first steps 
towards obtaining a coherent analysis is the detection of outlaying observations. Although outliers are often 
considered as an error or noise, they may carry important information. 

Detected outliers are candidates for aberrant data that may otherwise adversely lead to model misspecification, 
biased parameter estimation and incorrect results. It is therefore important to identify them prior to modeling and 
analysis. 

The definition of an outlier often depends on hidden assumptions regarding the data structure and the applied 
detection method.  

Similarly an outlier as “an observation that deviates so much from other observations as to arouse suspicion that it 
was generated by a different mechanism”.  

Outlier detection is a process of identifying these patterns which do not have regular behavior. Detection of 
outliers is widely used these days. The interest in outliers is strong since they may constitute critical and 
actionable information in various domains, such as intrusion and fraud detection, and medical diagnosis. 

The task of detecting outliers can be classified as supervised, semi-supervised, and unsupervised, depending on 
the existence of labels for outliers and regular instances. Unsupervised methods are more widely applied as other 
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categories require accurate and representative labels that are often expensive to obtain. Unsupervised methods 
include distance-based methods that mainly rely on a distance measure or similarity in order to detect outliers. 

Our motivation is based on the following factors:  

1) It is essential to understand how the increase of dimensionality impacts outlier detection. The actual challenges 
posed by the “curse of dimensionality” differ from the commonly accepted view that every point becomes an 
almost equally good outlier in high-dimensional space. We will present further evidence which challenges this 
view, motivating the (re)examination of methods.  

2) Reverse nearest-neighbor counts have been proposed in the past as a method for expressing outlierness of data 
points but no insight apart from basic intuition was offered as to why these counts should represent meaningful 
outlier scores. Recent observations that reverse-neighbor counts are affected by increased dimensionality of data 
warrant their reexamination for the outlier-detection task. In this light, we will revisit the ODIN method.  

Our contributions can be summarized as follows: 

1) We discuss the challenges faced by unsupervised outlier detection in high-dimensional space, in Section 3. 
Despite the general impression that all points in a high-dimensional data set seem to become outliers [9], we show 
that unsupervised methods can detect outliers which are more pronounced in high dimensions, under the 
assumption that all data attributes are meaningful, i.e. not noisy. 

2) In Section 4 we consider anti-hubs and how these anti-hubs relate to outlierness of points. We consider low 
dimensional settings and extend our view to the full range of neighborhood sizes. 

3) Basing on the relation between outliers and anti-hubs in both high-dimensional and low-dimensional settings in 
Section 5, by using k-occurrence we analyze two ways for expressing the outlierness of points, starting with the 
ODIN method.  

4) Lastly, in Section 6 we illustrate our experiments with synthetic and real data sets, demonstrating the benefits 
of the methods, and the conditions in which the benefits are expected. 
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Fig 1: Outlier scores versus dimensionality d for uniformly distributed data in [0,1]d : (a) Standard deviation; (b) Histogram of 50-NN 

scores; (c) Histogram of normalized ABOD scores. 
 

II. RELATED WORK 
The scope of our investigation is to examine: 
 (1) Unsupervised methods. 
 (2) Point anomalies, i.e., particular points which can be outliers without considering contextual or collective 
information 
 (3) Methods that produce outlier score for each point and detect the outliers basing on these scores. 
The most popular and frequently used methods are based mainly on nearest neighbors that assume the outliers 
are those points which appear far from rest of the points. These methods depend on a distance or similarity 
measure to find the neighbors. Euclidean distance is the most widely used distance. 
 

III.  OUTLIER DETECTION IN HIGH DIMENSIONS 

In this section we revisit the commonly accepted view that unsupervised methods detect every point as an almost 
equally good outlier in high-dimensional space [9]. In [10] this view was challenged by showing that the exact 
opposite may take place: as dimensionality increases, outliers generated by a different mechanism from the data 
tend to be detected as more prominent by unsupervised methods, assuming all dimensions carry useful 
information.  

We present an example showing that this can happen even when no true outliers exist, in the sense of originating 
from a different distribution than other points. 

Example 3.1: Let us observe n =10,000 d-dimensional points, whose components are independently drawn from 
the uniform distribution in range [0,1]. We employ the classic k-NN method [3] (k = 50; similar results are 
obtained with other values of k). We also examine ABOD [19] (for efficiency reasons we use the Fast ABOD 
variant with k = 0:1n), and use standard deviation to express the variability in the assigned outlier scores.  

Fig. 1a illustrates the standard deviations of outlier scores against dimensionality d. Let us observe the k-NN 
method first. For small values of d, deviation of scores is close to 0, which means that all points tend to have 
almost identical outlier scores. This is expected, because for low d values, points that are uniformly distributed 
in [0,1]d contain no prominent outliers. This assumption also holds as d increases, i.e., still there should be no 
prominent outliers in the data. Nevertheless, with increasing dimensionality, for k-NN there is a clear increase of 
the standard deviation. This increase indicates that some points tend to have significantly smaller or larger 
outlier scores than others. This can be observed in the histogram of the outlier scores in Fig. 1b, for d=3 and 
d=100. In the former case, the vast majority of points have very similar scores. The latter case, however, clearly 
shows the existence of points in the right tails of the distributions which are prominent outliers, as well as points 
on the opposite end with much smaller scores. 
The ABOD method, on the other hand, exhibits a completely different trend in Fig. 1a, with the deviation of its 
scores quickly diminishing as dimensionality increases, which makes it appear that the method is severely 
“cursed” by the dimensionality. However, ABOD was specifically designed to take advantage of high 
dimensionality and shown to be very effective in such settings (cf. Section 6), meaning that the shrinking 
variability observed in Fig. 1a says little about the expected performance of ABOD, which ultimately depends on 
the quality of the produced outlier rankings [10]. However, when scores are regularized by logarithmic inversion 
and linearly normalized to the [0,1] range [25], a trend similar to k-NN can be observed, shown in Fig. 1c. 
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IV. ANTI-HUBS AND OUTLIERS 

In this section, we consider anti-hubs as a special category of points in high-dimensional spaces. We also explore 
the relation between anti-hubs and outliers detected by unsupervised methods in the context of varying 
neighborhood size k. 

A. Anti-hubs: Definition and Causes   

 The existence of anti-hubs is a direct consequence of high dimensionality when neighborhood size k is small 
compared to the size of the data.  

 Distance concentration refers to the tendency of distances in high-dimensional data to become almost 
indiscernible as dimensionality increases, and is usually expressed through a ratio of a notion of spread and 
magnitude of the distribution of distances of all points in a data set to some reference point. If this ratio tends to 0 
as dimensionality goes to infinity, it is said that distances concentrate. 

Let us define the notions of k-occurrences, hubs and anti-hubs. 

Definition1 (k-occurrences): Let D be a finite set of n points. For point x ϵ D and a given distance or similarity 
measure, the number of k-occurrences, denoted Nk(x), is the number of times x occurs among the k nearest 
neighbors of all other points in D. Equivalently, Nk(x) is the reverse k-nearest neighbor count of x within D.  

Definition 2 (hubs and anti-hub): For q ϵ (0,1), hubs are the points x ϵ D with the highest values of Nk(x). For p 
ϵ (0,1), p< 1- q, anti-hubs are the points x ϵ D with the lowest values of Nk(x). 

Under widely applicable assumptions, for k<<n, as dimensionality increases the distribution of Nk becomes 
skewed to the right, with variance increasing, resulting in the emergence of hubs that appear in many more k-NN 
lists than other points, and conversely anti-hubs that appear in a much lower number of k-NN lists (possibly 0). 
These extreme cases of hubs and anti-hubs are the main points of our interest. 

To get a clear idea through which hubs and anti-hubs emerge, let us consider representation of distances in the 
data space via the hyper-sphere centered at some reference point. The data mean is selected as the reference point. 
Some data points will lie very close to the hyper-sphere surface, some will lie considerably below the surface and 
some will be situated considerably above. 

 Since the data mean is taken to be the center of the hyper-sphere, as dimensionality increases the points 
considerably below the surface tend to become closer, in relative terms, to other points in the data set, becoming 
hubs.  

Conversely, points considerably above the surface of the hyper-sphere become anti-hubs, while points near to the 
surface, i.e., the “regular” points, tend to have a close to expected value of Nk (which is k). 

It follows that the principal mechanism which generates hubs and anti-hubs is spatial centrality: when a point is 
closer to the center, the distances to its neighbors become smaller. Conversely, when a point is farther away from 
the center, the distances to its nearest neighbors become larger. Spatial centrality becomes amplified as 
dimensionality increases, producing more pronounced hubs and anti-hubs. 

Example 3.1: To illustrate the effect of centrality on formation of hubs and anti-hubs, let us consider Spearman’s 
rho and Kendall’s tau-b correlations between Euclidean distance to the data center and N5 scores, for the same iid 
uniform data used in the previous example. As dimensionality increases, stronger correlation emerges, increasing 
from 0:02 Spearman/0:014 Kendall in the three-dimensional case to 0:8 Spearman/0:63 Kendall for 20 
dimensions and 0:867 Spearman/0:715 Kendall for the 100-dimensional setting (weaker Kendall than Spearman 
correlations are predominantly due to ties in the integer N5 scores). This implies that points closer to the center 
tend to become hubs. We made analogous observations with other values of k  n, and combinations of data 
distributions and distance measures for which hubness occurs.  

   B. The Relation between Anti hubs and Outliers 

We can generally categorize outlier detection methods into global and local approaches. We can decide whether a 
data object is outlier or not based on the complete database or only on a selection of data objects i.e., global or 
local scope.    

 For example, by raising the value of k when using the classic k-NN outlier detection method, one increases the 
set of data points used to determine the outlier score of the point of interest, moving from a local to a global 
notion of outlierness, and ending in the extreme case when k = n-1. Likewise, raising k when determining reverse 
nearest neighbors, i.e., anti-hubs, raises the expected size of reverse-neighbor sets (while their size can still vary 
amongst points). 
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Since anti-hubs have been defined as points with the lowest Nk values, we can explore the relation between Nk 
scores and outlierness by measuring the correlation between Nk values and outlier scores produced by 
unsupervised methods. 

For the data in Example 3.1, we measured the Kendall tau-b correlation coefficient between inverse Nk values 
and the outlier scores computed by the k-NN and ABOD methods (for efficiency reasons we use Fast ABOD 
[19] with k=0.1         n=1,000). The measured correlations are plotted in Figs. 2a and 2b, together with the 
correlation between inverse Nk values and the distance to the data set mean (Fig. 2c) for two values of 
dimensionality: low (d = 2) and high (d = 100). Furthermore, we consider two portions of points for computing 
correlations: all points (p = 100%) and p = 5% of points with the highest distance from the data set mean as the 
strongest outliers. It can be seen that for the high dimensional case correlations for p = 100% are very strong for 
a wide range of k values, with the exceptions being very low (close to 1) and very high values (close to n = 
10,000). For p = 5% agreement between Nk and k-NN/ABOD still exists, but is notably weaker. This means that 
Nk scores can be considered a feasible alternative to established k-NN and ABOD outlier scoring methods, 
since on one hand they produce very similar rankings overall, but on the other hand the rankings of the strongest 
outliers produced by Nk values do not completely agree with the established methods, suggesting that Nk is not 
redundant compared to them. The suitability of Nk for expressing outlierness is supported by the strong 
correlations with the “ground truth” shown in Fig. 2c.  

 

 
 

 
 
 

 
 

Fig 2: Correlation between Nk values and outlier scores (a, b), and the distance from the data set mean as the “ground truth” (c), for iid 
uniform random data (n = 10,000 points).  

 
V. OUTLIER DETECTION BASED ON ANTI-HUBS 

In this section we consider methods for outlier detection based on anti-hubs described in previous sections. 
Natural outlier scoring based on Nk counts was used in the ODIN method [11]. Since we do not consider 
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threshold parameters, and apply normalization to the scores, we will reformulate this method as AntiHub, which 
defines the outlier score of point x from data set D as a function of Nk(x), and is given in Algorithm 1. 

 
Algorithm 1: AntiHub1 

 
Input: 

Distance measure “dist” 

 Ordered data set D = (x1; x2; ... ; xn) where xi ϵ D, for i ϵ {1; 2; ... ; n} 

 No. of neighbors k ϵ {1; 2; ...} 

 
Output:  

 Vector s = (s1; s2; ... ; sn) , where si is the outlier score of xi, for  i ϵ {1; 2; ... ; n} 

 
Steps: 

1) Let x be our point of interest. We find out the nearest neighbors of all other data objects except x.      

2) Then we calculate the number of times x has occurred among the nearest neighbors of all other points in D 
with respective to dist.  

 3)  This value is the Nk occurrence of point x i.e. Nk(xi). 

4) The outlier score of point x from data set D is a function of Nk(x). 

5) We repeat the above process for each and every data object. 

 
Discrimination of scores represents a notable weakness of the AntiHub method.  

In order to add more discrimination, one approach could be to raise k, possibly to some value comparable with n. 

But the approach raises two concerns:  

(1) With increasing k the notion of outlierness moves from local to global, thus if local outliers are of interest they 
can be missed;  

(2) k values comparable with n raise issues with computational complexity. 

We propose a simple heuristic method AntiHub2, which refines outlier scores produced by the AntiHub method 
by also considering the Nk scores of the neighbors of x, in addition to Nk(x) itself.For each point x, AntiHub2 
proportionally adds (1-α).Nk(x) to α times the sum of Nk scores of the k nearest neighbors of x, where α ϵ [0,1]. 
 To aggregate the neighbors’ scores, we select summation as a simple way, while other heuristics such as 
averaging are also possible. The proportion α is automatically determined by maximizing discrimination between 
outlier scores of the strongest outliers, and controlled by two user-provided parameters: the ratio of strongest 
outliers for which to observe discrimination  and step size when searching for the best a value. Algorithm 2 
describes the method in more detail.  

 
Algorithm 2: AntiHub2 

 
Input: 

• Distance measure dist  
• Ordered data set D = (x1, x2, ... , xn), where xi ϵ D, for i ϵ  {1, 2, ... , n}  
• No. of neighbors k = {1, 2, ...}  
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Output: 

• Vector s = (s1,s2, ... , sn) , where si is the outlier score of xi, for  i ϵ (1,2, ... , n) 

 
Temporary variables: 

• AntiHub scores a   
• Sums of nearest neighbors’ AntiHub scores “ann”   
• Proportion α ϵ [0; 1] 
• (Current) raw outlier scores ct,t 

 
Steps: 

1:  Assign a := AntiHub1 

2:  For each i ϵ (1, 2, ... , n) 

        Assign anni :=Σ  j ϵ NNdist(k;i) aj, where NNdist(k; i) is the set of indices of k nearest neighbors of xi 

3: Now add (1-α).Nk(x) to α  times the sum of Nk scores of the k nearest neighbors of x. i.e, cti =(1-α) ai 
+α.anni  

4:  The outlier score of point x from data set D is a function of cti  

 
VI. EXPERIMENTAL EVALUATION 

  The goals of our experimental evaluation are 

1) To examine the effectiveness of outlier detection methods proposed in the previous section. 
2)  To examine the behavior of the methods with respect to the k parameter.  
The main aim of this section is to further support that reverse-neighbor relations can be effectively applied to 

detect outliers in both high- and low-dimensional settings. 
 
A. Experimental Procedure  
 
 I) Methods: 
 We consider the two methods described in the previous section, denoted AntiHub1(k) and AntiHub2(k), where 
k is the used number of nearest neighbors. We will always assume Euclidean distance. For convenience, k may 
be referred to as a fraction of data set size n. 
               
We examine the k-NN method as the main criteria for comparison [3]. For the second baseline we select ABOD 
[19] as it exploits the properties of high-dimensional data. 
We will also include LOF [30] as a classic representative of density-based methods. Finally, we will include the 
influenced outlierness method (INFLO) [24], a density-based method which also makes use of reverse nearest 
neighbors (through a symmetric neighborhood relationship).  
              
We employ the two-way search method [24], always using the default threshold value of M = 1. For LOF and 
INFLO we use the implementations provided by the environment for developing KDD-applications supported 
by index-structures (ELKI) [31], while for other methods we use our own implementations. 
In all the experiments performed, we used areas under curve (AUC), which is a standard way to measure the 
effectiveness of outlier-detection methods [4], [18], [32]. 
 
II )Data Sets  

 
 To perform experiments we used synthetic as well as real data sets. Synthetic data sets are employed because 
we can modify crucial parameters, such as dimensionality and distribution of data. Comparison among different 
outlier detection methods is also performed with real data sets summarized in Table 1, which shows the number 
of points (n), dimensionality (d), skewness of the distribution of N10 (SN10 ), the percentage of points labeled 
as outliers, and data set source.  
  
The associated class labels are used only for evaluation purposes. Unless otherwise stated in Table 1, we 
designate the minority class as outliers. All real data sets are z-score standardized. The SN10 values are included 
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following the approach from [14], in order to give an indication of data set intrinsic dimensionality which 
affects the degree distribution of the k-NN graph (for k n). 
Despite of the majority of data sets having high (embedding) dimensionality d, only us-crime appears to be 
intrinsically high-dimensional (with SN10 > 1), with churn, ctg3, ctg10 and nba-allstar-1973-2009 being of 
moderate intrinsic dimensionality, and other data sets having low intrinsic dimensionality. 

 
B.Experimental Results  
 
I) Experiment with Synthetic Data  
We randomly generate n = 10,000 points divided into two clusters of equal size, by drawing 5,000 points from 
the multivariate normal distribution with mean -1 and independent components with standard deviation 0.1, and 
the other 5,000 points from the normal distribution with mean 1 and component standard deviation 1. We 
consider dimensionalities 2 and 100. For each cluster, we take 5% of points with the largest distance from their 
cluster center, move them even farther from the center by 20% of the distance, and designate them as outliers. 
 
The results of applying outlier detection methods are shown in Fig. 3. The chart in Fig. 3a shows the 2-
dimensional setting, while Fig. 3b depicts 100-dimensional data. Both charts show the AUC of outlier detection 
methods as a function of parameter k, with the exception of ABOD which is used in its Fast ABOD variant with 
k = 0.1n. To facilitate a better view of both local and global case, a logarithmic horizontal axis is used. 
 
In all cases k-NN and ABOD do not perform particularly well. AntiHub is able to achieve very good 
performance, with the only difference between the low- and high-dimensional settings being in the value of k 
where good performance is achieved: in low dimensions values between 100 and 1,500 are all sufficient, while 
in high dimensions it performs best for k ranging from 500 to just below 5,000. Density-based methods LOF 
and INFLO expectedly perform very well, but it is important to note that AntiHub exhibits robustness to 
different densities in a very simple and natural fashion, without explicitly modeling density. 
 
 

 
 

Fig. 3. Results for synthetic data with two cluster 
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VII.  CONCLUSION 
 

In this paper, we provided a unifying view of the role of reverse nearest neighbor counts in problems concerning 
unsupervised outlier detection, focusing on the effects of high dimensionality on unsupervised outlier-detection 
methods. 
Based on the analysis, we formulated the Anti Hub method for detection of outliers, discussed its properties, and 
proposed a derived method which improves discrimination between scores. 
The existence of hubs and anti-hubs in high-dimensional data is relevant to machine-learning techniques from 
various families: supervised, semi-supervised, as well as unsupervised. 
In this paper we mainly focused on only unsupervised methods, but in future work it can be extended to 
supervised and semi-supervised methods as well. Another relevant topic is the development of approximate 
versions of Anti Hub methods that may sacrifice accuracy to improve execution speed.    
Finally, secondary measures of distance/similarity, such as shared-neighbor distances  warrant further 
exploration in the outlier-detection context. 
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