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Abstract— Frequent closed patterns technique is used to extract smaller and most important frequent 
patterns. In existed algorithms, when finding frequent closed itemsets, a large amount of useless frequent 
itemsets will generated, which leads to high cost as well as ineffective.  To solve this problem, we propose an 
optimized algorithm about mining frequent closed patterns without duplication. Several experiments have 
been implemented to compare the proposed algorithm with the existed algorithm. The results demonstrate 
that our proposed approach has better performance by reducing the number of frequent closed items without 
losing any information. 
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I. INTRODUCTION 

The frequent itemsets play an important role in the data mining, which can find important patterns in 
databases, such as sequences, clusters, association rules, correlations, classier, and episodes. Usually, the number 
of extracted frequent itemsets are very big, but actually the number of most important itemsets is much smaller 
than those extracted itemsets. Therefore, it is very important to constrain the number of extracted frequent 
itemsets. Then we propose a more efficient mining algorithm to reduce the number of extracted patterns which is 
less important and interesting. So far, the researchers have proposed many frequent itemsets mining algorithms 
[1, 2, 3]. Some closed itemsets mining algorithms are designed for centralized datasets and their performance 
degrades for large datasets, that is, datasets with a large number of records [4]. There is no need to find 
associations and complete set of frequent itemsets, we just need to get the frequent closed itemsets and their 
corresponding rules. 

  In general, mining frequent closed itemsets in terms of capacity and power is the same with mining complete 
set of frequent itemsets. However, mining frequent closed itemsets can make the size fewer than frequent 
itemsets, and also increases the mining efficiency.  Let us examine some examples, suppose we have a database 
containing only two transactions, “{(K1, K2,. . . , K100), (K1, K2…….K50)}", the Min_Sup = 1 and the Min_Conf 
= 50%. To find the association mining with mining frequent itemsets methods, it will generate  2100 - 1 ≈ 1030 
frequent itemsets, which are (K1), . . . , (K100), (K1, K2), . . . , (K99, K100), . . . ,( K1, K2……. K100). And it will 
generate a very large number of association rules. While when we use the method of mining frequent closed 
itemsets, it will generate only two frequent closed itemsets:{( K1, K2….. K50), (K1, K2……. K100)}, and one 
association rule: “( K1, K2….. K50) => (K51, K52……. K100)". Therefore, we can conclude that mining frequent 
closed itemsets is more efficient than mining frequent itemsets. How to mining frequent closed itemsets more 
efficiently is our research focus.  

II. RELATED WORK

The reference [5] has proposed a method of mining frequent closed itemsets firstly, called A-close 
algorithm. A-close Algorithm mainly uses breadth-first search method to find frequent closed patterns. But the 
breadth-first search method is difficult to implement in very large database or datasets with long patterns, 
especially there are several candidates in the database, because which leads to check the database many times.  

The CHARM algorithm [6] and MAFIA algorithm [7] are based on the database vertical representation. The 
MAFIA algorithm is at most considered for finding maximal patterns, however it has a preference to find closed 
itemsets. The CLOSET algorithm [8], based on the principle of FP-growth algorithm [9], builds the frequent 
pattern tree and then build the conditional of FP-trees recursively in a bottom-up tree-search manner.  

The CLOSET algorithm is designed to find frequent closed itemsets, and produce association rules, which can 
reduce both the cost of computing and knowledge in the analysis of the association rule, by reducing results for 
just frequent closed itemsets. This algorithm mainly uses breadth-first search method to find frequent closed 
patterns with FP-tree structure. The CLOSET algorithm is a very effective technique but complicated. This 
algorithm scans the frequent items firstly, then divides frequent items to finding only closed frequent itemsets. 
The CLOSET algorithm recursively implements mining the subsets of the frequent closed itemsets. The algorithm 
then effectively creates conditional databases of the frequent closed items separately from the initial transaction 
database. The CLOSET algorithm can save the cost of time and memory. But when facing a large database, it 
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should need more memory to store the extracted results. In the third section, we will analyze the CLOSET 
algorithm in detail. The CLOSET algorithm can save the cost of time and memory. But when facing a large 
database, it should need more memory to store the extracted results.   

III. OPTIMIZED ALGORITHM OF MINING FREQUENT CLOSE ITEMSETS 

With analyzing the CLOSET algorithm, when extracting the frequent itemsets, we found that this algorithm 
still generates a lot of useless frequent patterns which does not need to be replicated. When extracting a large 
amount of frequent patterns, it requires more space and more time, which leads to high cost as well as 
ineffectiveness. In this section, we will propose an optimized algorithm to reduce the number of frequent close 
patterns without loss any information. 

A.  Main Process of Proposed Algorithm 

We use a simple example to explain how our proposed algorithm to implement mining frequent closed 
itemsets. A fruit basket items is shown in Fig.1. The transaction database of this figure is shown in Table 1, where 
min_sup = 2, and min_sup means minimum support.  

 
 
 
 
 
 
 
 
 

Figure 1. Market Basket Items in Example 

Table 1.  Transaction Database  

TID Items in transaction 

10 Apple   , Coconut   , Dates   , Eggfruit  ,Figs 

20 Apple    , Banana , Eggfruit 

30 Coconut    , Eggfruit  ,Figs 

40 Apple , Coconut   ,Dates   , Figs 

50 Coconut    , Eggfruit  ,Figs 

In the following, we will illustrate the main idea of our proposed algorithm with this example. 

1) Count all the frequent items 

This step begins by scanning all the database to find the frequent items and build frequent item list, named as 
f_list. The f_list include all the support items in the database and then store these items in descending order based 
on the number of the support, shown in Table 2. f_list = {Coconut: 4, Eggfruit:4, Figs: 4, Apple: 3, Dates:2}, and 
the number after “:” refers to the support of the item. We can omit any infrequent item such as Banana, because 
the support of this item=1 < min_up. For example, [Apple Banana Eggfruit] is listed as [Eggfruit Apple], where 
Banana is omitted. 

Table 2. Sorted in Descending 

TDB 

Coconut ,Eggfruit, Figs, Apple ,Dates 

Eggfruit, Apple 

Coconut    , Eggfruit  ,Figs 

Coconut , Figs, Apple, Dates 

Coconut    , Eggfruit  ,Figs 
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2) Divide search space 

Based on the f_list, we can divide all frequent closed itemsets into 5 non-overlap subsets. The first one 
involves Dates item, the second one involves Apple item without Dates, the third one involves Figs item without 
Apple and Dates, the fourth one contains Eggfruit without Figs, Apple and Dates, and the last one contains only 
Coconut. So far, we have found all the subsets of frequent closed itemsets. 

3) Find  all the subsets of Frequent Closed Items 

By constructing corresponding conditional databases recursively, we can find all the subsets of Frequent 
Closed Items (FCI). 

a. To find the FCI containing Dates. We need only transactions with Dates. We denote Dates-conditional 
database as TDB|DATES, which is {[Coconut, Eggfruit, Figs, Apple]; [Coconut, Figs, Apple] }. We 
should omit Dates item in each transaction in the Dates-conditional database. The support of Dates item = 
2. The Items of Coconut, Figs, and Apple appear two time respectively in TDB|DATES. That means, all 
the transactions with Dates also includes Coconut, Figs, and Apple. But, Eggfruit is infrequent because it 
appears only one time in TDB|DATES. So, {Coconut Figs Apple Dates: 2} is an FCI. And the itemset 
covers each frequent item in TDB|DATES. 

b. To find the FCI containing APPLE without Dates. Similar with Dates-conditional database, the APPLE-
conditional database, TDB|APPLE = {Coconut Eggfruit Figs, Eggfruit, Coconut Figs}. The item with 
Dates in all transactions are omitted, because all FCI with Dates have been found in TDB|DATES.  The 
support of Apple = 3, since we don’t have any item appearing in all transactions in the Apple-conditional 
and the summation support of Apple = 2 in the first FCI, so Apple: 3 is FCI. 

To find all the FCI including Apple without DATES, we should be further project the Apple 
conditional database. The f_list APPLE = <Coconut: 2, Eggfruit: 2, Figs: 2> should ignore infrequent 
item if it is in f_list. Based on the f_list APPLE, the FCI of Apple wit out Dates can be divided into three 
parts: 

     The first one involves Apple and Figs without Dates, the second one contains Apple and Eggfruit 
without Dates or Figs, and the third one involves Apple and Coconut without Dates, Eggfruit or Figs. We 
can build a conditional databases recursively.  The support of Figs and Apple equals to (Coconut Figs 
Apple Dates) which have already been found. It means that all transactions containing (Figs Apple) must 
also contain (Coconut Figs Apple Dates). Therefore, we don’t have any frequent closed itemset involving 
Figs and Apple without Dates. Similarly, we cannot find FCI containing Coconut and Apple without 
Dates, Eggfruit or Figs, since {Coconut Apple} is a subset of {Coconut Figs Apple Dates} and 
sup{Coconut Apple} = sup{Coconut Figs Apple Dates}.The Eggfruit APPLE-conditional database, 
TDB|EGGFRUIT APPLE = { Coconut }, can’t generate any frequent items. Therefore, {Eggfruit Apple: 
2} should be a frequent closed itemset. 

But the FCI in transaction contains {Apple: 3} have support equal three, and this frequent close item 
is reduplicate, because the items {Apple} is already found in another FCI{Coconut, Figs, Apple, Dates: 2} 
and second FCI {Eggfruit , Apple}:2 where the support is smaller. The support of Apple in first FCI 
transaction = 2 and the support of Apple in second FCI transaction = 2. Meaningful, the Sup{Apple} <= 
Sup {Coconut, Figs, Apple, Dates} + {Eggfruit , Apple}. Then the total support of this item = 4, so this 
frequent close item is reduplicate. Therefore, we can prune this frequent close item. This analysis process 
is shown in Fig. 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Duplicated Frequent Close Item “Apple” 
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c. To find FCI containing Figs without APPLE and Dates. The Figs -conditional database, TDBFigs = 
{Coconut Eggfruit: 3, Coconut}, where Coconut Eggfruit: 3 means that Coconut and Eggfruit appear 
three times. Because Coconut Eggfruit Figs: 3 is not a subset of any found itemset, it is an FCI. 

Also, Coconut appear in all transactions in the Figs-conditional database, and Coconut and Figs have 
not a subset of any FCI with the equal support. Therefore, {Coconut, Figs: 4} is FCI. But this FCI 
contains {Coconut, Figs : 4} is reduplicate, since the items with Coconut and Figs is already found in the  
first FCI transaction and third transaction with the support more than its support. 

The support of Coconut and Figs in first FCI transaction = 2. The support of Coconut and Figs in 
second transaction = 3. Meaningful, the Sup{Coconut, Figs } <= Sup {Coconut, Figs, Apple, Dates} + 
{ Coconut, Eggfruit ,Figs }. Then the total support of these items = 5, so this frequent close itemset is 
reduplicate, which should be Pruned.  This analysis process is shown in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3．Duplicated Frequent Close Item “ Coconut  and Figs” 

d. To find FCI containing Eggfruit without Figs, Apple and Dates. Similarly, the Eggfruit-conditional 
database, TDBEggfruit= {Coconut: 3}. But Coconut Eggfruit is not an FCI because it is an right subset of 
Coconut Eggfruit Figs and sup(Coconut, Eggfruit)=sup(Coconut, Eggfruit, Figs).  

Therefore, {Eggfruit: 4} is a FCI. But this FCI in transaction contains {Eggfruit: 4}, which have 
support equal four. This frequent close itemset is reduplicate because the items Eggfruit is already found 
in another relation with support more than 4. The support of {Eggfruit} in second transaction = 3 and the 
support of Eggfruit in third transaction = 2. Meaningful, the Sup{ Eggfruit } <= Sup{ Coconut, Eggfruit, 
Figs } + { Eggfruit ,Apple }. Then the total support of this item = 5, so this reduplicate frequent close 
itemset should be pruned.  This analysis process is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4．Duplicated Frequent Close Item “Eggfruit” 

e. To find FCI involving Coconut. We previously know that there is no FCI involving Coconut without Figs. 
Therefore, there is no FCI with only Coconut. 
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4) Final Frequent Closed Itemsets 

Finally, the extracted set of FCI is: 

{[APPLE, COCONUT, DATES, FIGS: 2], [APPLE, EGGFRUIT: 2],  [COCONUT, EGGFRUIT, FIGS]: 3}. 

B.  Optimized Algorithm 

In the above section, we use an example to explain the main process our proposed algorithm. In the following, 
the pseudo code is presented, and this algorithm is named as CLOSET*: 

CLOSET* Algorithm: 

Input:   TDB and min_Sup; 

Output: FCI (Optimized) ;  

1)      For each Transaction in database  
2)             Count the frequent items  
3)         If(frequent_item >= min_sup)  
4)               {Add to f_list;} 
5)         Else  
6)                Delete (frequent_item) 
7)      For each frequent set  
8)         Identify the subset and add to list; // based on f_list 
9)                  Sort subset in descending order:  
10)   For each transaction in list  
11)          If (transaction(x) contains subset(frequent set)  
12)               { Prune selected item;}  
13)         Else  
14)               {Add to tree sub transaction as frequent closed Pattern }  
15)   For each transaction in frequent closed items 
               If (FCI[X] Subset FCI[Y,Z] ) & (Sup[X]<=  
               ∑Sup[Y,Z]) 
16)     {Prune selected transaction ;}     
17)       Else  

{Add to new sub transaction as final} 
IV. EXPERIMENTS AND ANALYSIS 

   In this section, we present a performance comparison between our proposed algorithm and CLOSET 
algorithm, and illustrate the experimental results. The experiments are performed in environment of Core(TM)i-
2130 CPU @ 3.40 GHz and 4.00 GB memory size. And Java language on windows 7 platform is used to 
implement the proposed algorithm. The experiments dataset is shown in Table 3.  

Table 3. Experiments Datasets 

No. Databases Transaction Number Items Number 

I. Fruits Data 6.0 6.0 

II. Market Basket 11040.0 12.0 

III. List of Medications 13454.0 20.0 

IV. List of Retail goods 100000.0 400.0 

In our experiments, we have a comparison of CLOSET algorithm with our algorithm, in order to highlight 
the benefits of our proposed CLOSET* algorithm, the experiments focus on evaluating the size of generated FCI 
compared between the CLOSET* algorithm and CLOSET algorithm. We have used four datasets in our 
experiments. The first dataset about fruits contains 5 transactions over 6 items, the average length of transactions 
is 4 and most of the transactions contain about 3 to 4 items. The second dataset about retail market basket data 
from an anonymous Chinese retail store. This market basket datasets contains 11040.0 transactions over 12 items. 
The average length of transactions is 13, and most of the transactions contain about 7 to 11 items. The third 
dataset about medication contains the retail List of medications from a pharmacy store. It contains 13454.0 
transactions over 20 items. The average length of transactions is 15, and most of the transactions contain between 
9 to 15 items. The fourth dataset about retail goods contains 100000.0 transactions over 400 items. The average 
length of transactions is 200, and most of the transactions contain between 220 to 300 items.  
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Figure 5. Compared Generated FCI in dataset I 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Compared Generated FCI in dataset II 
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Figure 7. Compared Generated FCI in dataset III 
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Figure 8. Compared Generated FCI in dataset IV 
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The experiments result is shown in Fig.5, Fig.6, Fig.7, and Fig. 8. We can figure that the size of generated FCI 
with our proposed method is less than the size of generated FCI with CLOSET algorithm. For example, 
considering the database3 with min_Sup = 0.5 %, our method generates size of 2750 KB of FCI, but the CLOSET 
algorithm generates size of 4010 KB of FCI. When min_Sup= 1.5 %, our method generates size of 804 KB of 
FCI, but the CLOSET algorithm generates size of 1290 KB of FCI.  

V. CONCLUSION 

In this paper, an optimized algorithm is proposed to extract frequent closed itemsets with less duplication 
without loss any information. This approach can reduce the number of generated frequent closed itemsets and the 
search space, which makes the data analysis much easier and flexible. With experiments based on several 
datasets, we demonstrate that the proposed algorithm can generate less FCI (Frequent Close Itemsets) with less 
duplication.  
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