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Abstract- High availability constraints ensure a high level of operational performance that must be 
maintained during a contractual measurement period. Such constraints must be satisfied, particularly, 
for critical systems related to global security and human safety. High availability often results from 
material redundancies and lead to large stochastic discrete event models with numerous states. Markov 
processes and stochastic Petri nets can be used to model, simulate and analyse such systems but their use 
is limited by the so called “combinatorial explosion” problem. This paper investigates the fluidification of 
stochastic Petri nets to overcome the previous problem. The main contribution is to propose a modular 
modeling of active and passive redundancies with Petri nets. Some approaches are then proposed to 
obtain equivalent behaviors in the long time with stochastic and continuous Petri nets. 

General terms: SPN: stochastic petri net, PDF: probability density functions, contPNs: continuous Petri nets, 
rv: random variable 

Keywords- Reliability analysis;  Redundancies; Petri nets;  Fluidification. 

I. INTRODUCTION 

Reliability and availability analysis are major challenges to improve the global security and the safety of 
processes. Users want their systems, for example, airplanes or computers, to be ready to serve them at all times. 
Availability refers to the ability of the user community to access the system, submit new work, update or alter 
existing work, or collect the results of previous work. If a user cannot access the system, it is said to be 
unavailable. The termsdowntime and uptimeare used to refer to periods when a system is unavailable and 
available. Scheduled and unscheduled downtime must be distinguished. Scheduled downtime results from 
maintenance operations and has little impact upon the user community. Unscheduled downtime events typically 
arise from hardware or software failures or environmental anomalies. Examples of unscheduled downtime 
events include power outages, failed CPU, over-temperature related shutdown, and so on. Such downtime must 
be considering at first in order to evaluate the availability of the system. 

Mean availability can be expressed as the percentage of uptime in a given year. The table I show the 
downtime that will be allowed for a particular percentage of availability, presuming that the system is required 
to operate continuously (without maintenance periods). 

Table I: Availability and downtime 

 Mean availability Downtime per year 

90% (“one nine”) 36.5 days 

95% 18.3 days 

99% (“two nines”) 3.7 days 

99.5 1.8 days 

99.9 (“three nines”) 8.8 hours 

99.99 (“four nines”) 53 minutes 

99.999 (“five nines”) 5.3 minutes 

99.9999 (“six nines”) 32 seconds 

High availability implies no human intervention to restore operation in complex systems. For example, 
availability limit of 99.999% allows about one second of downtime per day, which is impractical using human 
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labor. Human intervention for maintenance actions will certainly exceed this limit. Availability limit of 99% 
would allow an average of 15 minutes per day, which is realistic for human intervention. So, high availability 
refers to availability at less equal to 99%. 

Redundancy is used to eliminate the need for human intervention and to reach high availability 
requirements. For complex dynamical systems with numerous interdependent components and high availability 
constraints, the modeling and analysis methods are mainly based on stochastic discrete event models like 
Markov models [1] or stochastic Petri nets (SPNs) [2]. Such models are mathematically well founded and lead 
either to analytical results or numerical simulations. The first contribution of this paper is to propose modular 
models of the redundancies with SPNs. The compact and systematic design of SPNs is highlighted as an 
advantage in comparison with other state space models like Markov models. Estimation of availability with SPN 
simulations results as a consequence. But, in case of large systems, simulation and analysis methods lead to the 
problem of combinatory explosion that limits the use of state space models. In this context, fluidification can be 
discussed as a relaxation method [3,4]. The main idea of PNs fluidification is to replace a discrete SPN by a 
continuous one. The second contribution of the paper is to investigate some fluidification methods to evaluate 
the availability. 

II. STOCHASTIC PETRI NETS FOR AVAILABILITY EVALUATION 

A. Petri nets 

A Petri net (PN) is defined as <P, T, WPR, WPO> where P = {Pi} is a set of n places and T = {Tj} is a set of q 
transitions, W = WPO – WPR (Z)nq is the incidence matrix. M(t, Pi) stands for the marking of place Pi at time t, 
M(t) is the PN marking vector at time t and MI the PN initial marking. The marking changes when a transition 
fires. Transitions fire depending on the marking vector and on the firing conditions. The marking variation is 
given with respect to the firing vector X (Z)q such that �M = W. X. For a complete description of PN models 
and analysis, one can refer to [5,3]. 

B. Stochastic Petri nets 

A stochastic Petri net (SPN) is a timed PN with transitions firing periods that are characterized by 
exponential probability density functions (pdf) with firing rate µj, j = 1,…,q[6,2]. The marking of the place Pi of 
a marked SPN at time t will be referred as M(t, Pi). The SPNs considered in this paper are bounded, 
reinitialisable, with infinite server semantic, race policy and resampling memory. As a consequence, the 
considered SPNs have a reachability graph with a finite number N of states {S1,…,SN} and their marking process 
is mapped into a Markov model with state space isomorphic to the reachability graph [7]. The generator G of 
this Markov model can be computed from the reachability graph and from the firing parameters of the SPN. The 
state probabilities k(t), k = 1,…,Nof Markov model and the mean marking Mmm(t, Pi),i = 1,…,nof SPN satisfy: 

,ݐሺܯ                                          ܲ݅ሻ ൌ  ݉ . ሻ                                                ሺ1ሻݐሺߨ

ୀଵ,…,ே

 

wheremki stands for the number of tokens in place Pi when the system is in state Sk. 

C. Example 

Petri nets can be used to model systems with failures and repairs [8]. The simplest example is to consider a 
system composed of a single component (Figure 1). This component is assumed to fails and repairs with respect 
to exponential pdf. The failure rate is denoted by  and  stands for the repair rate. The place P1 stands for the 
safe state and P2 for the defect one. The transition T1 represents the occurrence of a fault and the transition T2 
represents the end of the repair process. 

 
Fig 1: Failure and repair process of a single component; SPN (left); corresponding Markov model (right) 

One can notice the similarity of both representations. In fact, the SPN in Figure 1 (left) is equivalent to the 
Markov model (right) with generator G: 

 
   

G
 
 

 (2) 

The resolution of the Chapman Kolmogorov equation [1] leads to the determination of the mean availability 
A() with respect to parameters  and . 

P1 P2

T1 : 

T2 : 

S1 (OK)


S2 (NOK)
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   (3) 

To conclude with this example, one can notice that high availability requirements are achieved only if the 
repair process is at least 99 times quicker than the failure process.  

D. Modular models of redundancies with PNs 

The simple example provided with Figure 1 does not enhance the advantages to use SPNs in comparison 
with Markov models. Such advantages will appear as evidence when redundancies are considered. Two kinds of 
redundancies can be considered: passive redundancies and active redundancies. 

E. Models of active redundant systems 

Active redundancies are used to achieve high availability by including enough excess capacity in the design 
to accommodate a performance decline. Systems with active redundancies include several identical components 
working together. A simple example is an aircraft with two separate engines. The aircraft continues to fly 
despite failure of a single engine. A more complex example is multiple redundant power generation facilities 
within a large system involving electric power transmission. Malfunction of a single component is not 
considered to be a failure unless the resulting performance decline exceeds the specification limits for the entire 
system. 

Figure 2 provides the usual representation of active redundancies with SPNs. A number n of identical 
component is considered. Components running simultaneously are represented by the tokens in place P1. Non 
reparable (left) and reparable (right) processes are considered. In both cases, the sojourn time of any token in 
place P1 is a random variable (rv) with exponential pdf of parameter .The duration to fire transition T1 is also a 
rv with exponential pdf of parameter .M(t, P1). When a component fails or is repaired, this parameter changes 
as M(t, P1). 

The SPNs in Figure 2 are used to represent total or partial active redundant system. A total redundant system 
is said to be available as long as M(t, P1) 1. In comparison a partial k / n redundant system is said to be 
available as long as M(t, P1)k. Mean availability with partial and total redundancies is easy to work out, with 
the evaluation of the marking M(t, P1). 

 
Fig 2: Active redundancies with n identical components; Failure process for non reparable systems (left); Failure and repair processes for 

reparable systems (right) 

In Figure 3, the case of non identical components is considered. This representation will be preferred when 
the redundant components have different failure and repair rates. More precisely, in Figure 3, p classes of 
components are considered and ni stands for the number of identical components in class i. In comparison with 
the previous model, the SPN in Figure 3 is composed of 2.p places, and availability will be evaluated according 
to the sum of marking variables M(t, P11) + … + M(t, Pp1). 

 
Fig 3: Failure and repair processes for active redundancies with p classes of ni components i = 1,…,p 

F. Models of passive redundant systems 

Passive redundancy is used in complex systems to achieve high availability with no performance decline. 
Multiple components are incorporated into a design that includes also a method to detect failures and 
automatically reconfigure the system to bypass failed items and replace them with safe ones. This is used with 
complex systems that are linked. For example, the rescue wind turbine in aircraft is a passive redundant 

P1 P2T1 : 

n

P1 P2

T1 : 

T2 : 

n

P11 P12

T 11 :  1 

T12 : 1 

Pp1 Pp2

Tp1 : p

Tp2 :p

n1 np…….
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component that will be used only when the power generators are out of order and when all batteries are down. In 
that case the rescue turbine will produce the energy required to maintain the main control devices of the aircraft. 

Figure 4 provides the usual representation of passive redundancies with SPNs for reparable systems. The 
duration to fire transition T1 is a rv with exponential pdf of parameter .min(M(t, P1), M(t, P3)) = .min(M(t, 
P1), 1). In Figure 4-left, concurrent repairs are considered and in Figure 4-right, non concurrent repairs are 
considered.  

 
Fig 4: Failure and repair processes for passive redundancies; concurrent repairs (left); non concurrent repairs (right) 

III. AVAILABILITY EVALUATION WITH SPNS 

A.  Analytical background 

A. SPNs can be used to evaluate usual indicators of reliability as characteristic times (MUT, MDT, 
MTTF or MTBF) and also instantaneous indicators as reliability or availability. In this work we will 
consider the particular case of mean availability. The basic idea is to use the equivalence that exists between 
the reachability graph of the SPN and the corresponding Markov model. The N states of the reachability 
graph are first separated into two classes: the class OK of Ns safe states and the class NOK of Nd defect 
ones. Let us denote s [0, 1]1 x Ns as the row vector of the state probabilities for normal states and d [0, 
1]1 x Nd as the row vector of the state probabilities for defect ones. The Chapman Kolmogorov equation of the 
associated Markov model can be written as in (4): 

    11 12

21 22

OK NOK
OK NOK

G Gd ( t ) ( t )
( t ) ( t ) .

G Gdt

 
 

 
  

   (4) 

whereG11, G12, G21 and G22 are sub-matrices of the generator G with appropriate dimensions. Thus, state 
probabilities are given by (5): 

11 12

21 22

0
G G

( t ) ( ).exp .t
G G

 
  

   
  

         (5)

 
and the mean availability is given by (6): 

1
1

0
Ns

OK Ns
Nd

A( ) ( ). ( ). 
 

     
 

  (6)

 
with 1Ns = (1,…1)T of dimension Ns. 

B.  Stochastic estimator by means of simulations  

B. SPNs can be used to estimate the mean availability (and also other indicators) by means of 
simulations with time horizon D. For that purpose, the probability of each state Sk is estimated with equation 
(7): 

 
0

1
 and lim

D

k k k k
D

( D ) f ( t ).dt ( ) ( D )
D

  


    
 (7) 

The functions fk(t),k = 1,…,N are defined with equation (8):
1 if    and 0 if   k k k kf ( t ) M(t ) S f (t ) M(t ) S   

       
(8) 

P1 P2

T1 : 

T2 : 

P3

n

P1 P2

T1 : 

T2 : 

P4

n

P3
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C. Examples: 

C. Let us consider again the example of Figure 1 with parameters  = 1.5e-5 TU-1  and  = 1e-4 TU-

1. The simulation of the system over time interval [0 : 1e7] leads to the estimation of state S1 probability 
reported in Figure 6. For this example, the availability equals the probability of state S1 and tends to the 
mean availability A() = 0.87. This numerical estimation coincides with the theoretical value of the mean 
availability provided by equation (2) and the considered system is not high available. 

 
Fig 5: Estimation of the state S1 probability with SPN simulations for the system of Figure 1 

Let us consider an active redundant system with 3 identical components with the same parameters  = 1.5e-5 
TU-1  and = 1e-4 TU-1. The SPN and Markov model are described in Figure 6. The simulation of the SPN leads 
to the estimation of the mean availability A() = 0.998 (Figure 7). 

 
Fig6: Active redundancies with 3 identical components 

 
Fig 7: Estimation of the mean availability with SPN simulations for the system of Figure 6 

D. PERFORMANCE EVALUATION FOR SYSTEMS WITH REDUNDANCIES 

  MODULAR MODELING 

As long as high availability is considered, systems with numerous redundant components must be 
represented. Each process proposed in figures 2 to 4 is a modular sub-model that can be included in the 
representation of a large system with redundancies. Figure 8 represents the connection of the failure and repair 
processes in large systems. The server with redundancies is represented by the transition T3 that is connected to 
the sub-model {P1, P2, T1, T3} (a failure process for n reparable components with total active redundancies). A 
simplified representation of the system is used with {P3, P4, T3, T4}. 

 
Fig 8: Failure and repair processes for active redundancies: integration of sub-models 
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The mean availability worked out with the sub-model in Figure 2 right and with the complete model in 
Figure 8 are equal. The proof is given for n = 1 and can be extended for n> 1. Assuming that the server T3has a 
firing rate x and that T4 has a firing rate y, the SPN in Figure 8 is equivalent to a Markov model with states S1 = 
(1 0 1 0)T, S2 = (0 1 1 0)T, S3 = (1 0 0 1)T, S4 = (0 1 0 1)T and generator G: 

 

0

0 0

0

0

( x ) x

G
y ( y )

y ( y )

 
 

 
 

  
  
  
 

    (9) 

The mean availability is given by the asymptotic probabilities of states S1 and S3: 

1 3

1 y y y
A( ) ( ) ( ) . .

D x

   
 

                (10) 

with: 
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y y y x y y
D . .

x x

    
  

             
     

After simplification (3) may be rewritten with (11): 

 

1

1

A( )
y

.( y x ) x

y x
.( y ) .( y )

 
 



  
 


  

   


   
(11) 

Thus the mean availability of SPNs in Figures 2 and 8 are identical and one can conclude that the integration 
of the sub-model for failure and repair process does not change the availability. The advantage of including the 
failure and repair processes in the global system is to evaluate the influence of availability on the server activity. 
In Figure 8, the flow of transition T3 depends on the redundancies that are included in the system design. The 
previous proof can be generalized for n redundant components and for partial k / n redundancies (arcs (P1, T3) 
and (T3, P1) will be weighted with k). 

  Example 

The system in Figure 9models a simple manufacturing system.  

 
Figure 9: Assembly workshop 

The final product is composed of two different parts, A and B, that are processed in machines M1 and M2 
(represented by transitions T1 and T2), and stored in buffers P4 and P6, respectively. Then, they are assembled by 
M3 (i.e. transition T3), and processed in M4 (i.e. transition T4). Finally, M5 (i.e. transition T5) packages them. 
During the processing of parts A and B, tool1 (tokens in place P5) and tool2 (tokens in place P7) are needed. 
Also tool3 (tokens in place P3) have to be used in the three final operations. The machines M1, M2, M4 and M5 
are assumed to be reliable and an active redundancy (n = 3) is considered for the assembly machine M3 that is 
assumed to have failure and repair rates  = 1.5e-2 TU-1  and = 1e-1 TU-1. The productivity of the workshop is 
evaluated with the computation of the output flow X(t, T5) with respect to the number k of pallets and tools : MI 
= (2k 2k k 0 k 0 k 0 0 3 0)T. The results obtained with Markov models and SPNs simulation over a time interval 
of D = 1000 TU are summed up in Tables 2 and 3. For k> 4, the computational effort becomes heavy because of 
the large number N of states and the performance evaluation with Markov model analysis is no longer 
computable. 
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Table 2: Performance evaluation with Markov models 

k N X(t, T5)with 
Markov model 

Computational 
effort (TU) 

1 48 0.29 0.1 

2 216 0.61 0.9 

3 640 0.93 12 

4 1500 1.25 108 

5 … … … 

Simulation with SPNs can be used to overcome the computational limitation with Markov model (Table 3). 
One can notice that the computational effort remains reasonable even for heavy loaded nets. The simulation 
error does not exceed 3% for the considered system and is less than 1% for many other cases. The addition of 3 
redundant components is enough to reach high availability requirements. 

Table 3: Performance evaluation with SPNs 

 
 
 
 
 
 
 
 
 
 
 
 
 

IV. FLUIDIFICATION OF SPNS 

A usual limitation encountered with the use of SPNs simulations is the determination of the time horizon D. 
Tide horizons lead to approximation errors and large horizons increase the computation effort. To overcome this 
difficulty, SPNs can be transformed into timed continuous Petri nets (contPNs) that are compact continuous 
time models. Such models converge very rapidly to their steady state. 

A. Timed continuous Petri nets 

ContPNs have been developed in order to provide continuous approximations of the discrete behaviors of 
timed PNs [5,16,3,4]. The marking of each place is a continuous non negative real valued function of time. Xmax 
= diag(xmax j)(R+)qxq is the diagonal matrix of maximal firing speeds xmax j, j = 1,…q and X(t, Tj) is the firing 
speed of transition Tj at time t that depends continuously on the marking of Tj input places. The flow through the 
transition Tj is defined by (12): 

X(t,Tj)=xmaxj.enab(M(t),Tj)  (12) 

with: 

 enab(M(t), Tj) = min {M(t, Pk) / w
PR

kj : Pk °Tj} (13) 

where°Tj stands for the set of Tj upstream places. 

B. Approximations of SPN with standard Fluidification 

Standard fluidification is the simplest way to transform a stochastic discrete event models into a continuous 
time one. Standard means that both models have the same structure (i.e. incidence matrices), parameters (i.e. 
firing rate of the transitions) and initial state (i.e. initial marking). In particular, xmaxj = j, j = 1,...,q is used with 
equations (12) and (13) for standard fluidification[3,4] 

An open issue is that standard fluidification of SPNs leads to continuous models so that the steady states of 
SPNs and contPNs do not coincide in many cases, particularly for non-ordinary PNs or non join-free PNs. As a 
consequence, availability estimation provided by the steady state of contPNs is different from the one resulting 
from the analysis of Markov model or from the SPN simulations.  

C.  Example 

The example of Figure 9 is considered again and simulated as a contPN. Standard fluidification is used and 
the results are reported in Table 4.  

k X(t, T5) 
with SPN 

Computational 
effort (TU) 

1 0.30 0.59 

2 0.61 2.0 

3 0.94 4.0 

4 1.24 6.8 

5 1.55 11 

10 2.41 30 

100 2.63 39 
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Table4: Performance evaluation with contPNs 

k X(t, T5) 
with contPN 

Computational 
effort (TU) 

1 0.33 0.25 

2 0.66 0.22 

3 1 0.22 

4 1.33 0.20 

5 1.66 0.22 

10 2.61 0.23 

100 2.61 0.22 

Simulation with contPNs lead to biased results, but the errors do not exceed 8% for k 10. One can also 
notice that the computation effort does not depend on the marking magnitude. Thus, standard fluidificationcan 
be used to evaluate the performance for heavy loaded net. 

V. DISCUSSION AND CONCLUSION 

In this paper, a modular modeling with stochastic Petri netsisproposedto represent redundancies in large 
systems in order to reach high availability requirements. The usual methods (analysis of the corresponding 
Markov model and SPN simulations) are discussed and fluidification of the discrete event models is presented 
as an alternative solution that provides good approximations of the mean availability under some specific 
assumptions (in particular the net is assumed to be heavy loaded).  

To conclude, several recent studies have been started to transform SPNs into contPNs that will provide a 
better approximation of the SPNs behavior in the long run.Markovian and Hybrid Markovian Continuous Petri 
Nets have been introduced for that purpose [9,10]. These models are continuous time Petri nets including 
stochastic variables with Poisson pdf. One difficulty is that the resulting models are no longer deterministic. In 
[11,12], piecewise constant timed continuous PNs have been proposed that are suitable to compute the SPNs 
steady state in some regions of the marking space. A homothetic approach has been also developed to provide 
an approximation of the SPNs steady state in the whole marking space [13,14]. Both approaches have been 
combined with interpolation and classification methods to provide an approximation of the SPN steady state 
[15]. 

At this time, the estimation of mean availability for large systems with fluid models remains an open issue 
that will continue to attract our interest. In particular a supervised combination of SPNs and contPNs in a single 
hybrid model will be investigated in our future work. 

REFERENCES 
[1] Rausand M., Hoyland A. (2004) System reliability theory: models, statistical methods, and applications, Wiley, Hoboken, New Jersey. 
[2] Molloy M.K. (1982) Performance analysis using stochastic Petri nets, IEEE Tran. Comp. C, 31, pp. 913 – 917. 
[3] Recalde L., Silva M. (2002) Petri nets and integrality relaxations: a view of continuous Petri nets, Trans. IEEE – SMC, part C, 32(4), 

pp. 314-326. 
[4] Recalde L., Silva M. (2004) On fluidification of Petri Nets: from discrete to hybrid and continuous models, An. Reviews in Control, 

28(2), pp. 253-266. 
[5] David R., Alla H. (1992) Petri nets and grafcet – tools for modelling discrete events systems, Prentice Hall, London.  
[6] Ajmone Marsan A. , Chiola G. (1987) On Petri nets with deterministic and exponentially distributed firing times, Advances in Petri 

nets (Rozenberg G.), Springer Verlag, pp. 132-145.  
[7] Bobbio, A. Puliafito, M. Telek, K. Trivedi, K. (1998) Recent Developments in Stochastic Petri Nets, J. of Cir., Syst., and Comp., 8 (1), 

pp. 119-158. 
[8] Schneeweiss W.G. (2001) Tutorial: Petri Nets as a Graphical Description Medium for Many Reliability Scenarios, IEEE Trans. On 

Reliability, 50 (2), pp.159-164. 
[9] Vazquez V., Recalde L., Silva M. (2008) Stochastic continuous-state approximation of markovian Petri net systems, Proc. IEEE – 

CDC08, pp. 901 – 906, Cancun, Mexico. 
[10] Vazquez V., Silva M. (2009) Hybrid approximations of markovian Petri nets, Proc. IFAC Conference on Analysis and Design of 

hybrid Systems, Zaragoza, Spain. 
[11] Lefebvre D., Leclercq E., Khalij L., Souza de Cursi E., El Akchioui N. (2009) Approximation of MTS stochastic Petri nets steady state 

by means of continuous Petri nets: a numerical approach, Proc. IFAC ADHS, pp. 62-67, Zaragoza, Spain. 
[12] Lefebvre D., Leclercq E. (2012) Piecewise constant timed continuous PNs for the steady state estimation of stochastic PNs, DISC, 

2011, DOI: 10.1007/s10626-011-0114-y. 
[13] Lefebvre D., Leclercq E., El Akchioui N., Khalij L., Souza de Cursi E. (2010) A geometric approach for the homothetic approximation 

of stochastic Petri nets, Proc. IFAC WODES, Berlin, Germany. 
[14] Lefebvre D. (2011) About the stochastic and continuous Petri nets equivalence in long run, Non-Linear Analysis, Hybrid Systems 

(NAHS), 5, pp. 394-406. 
[15] Lefebvre D., Leclercq E., El Akchioui N., Khalij L., Souza de Cursi E. (2012) Numerical approximation of SPNs asymptotic behaviors 

with contPNs combined with firing parameters classification, Proc. MOSIM, Bordeaux, France. 
[16] Recalde L., Teruel E., Silva M.(1999) Autonomous continuous P/T systems, Lecture notes in computer science, 1639, pp 107 – 126. 

Nabil El Akchioui et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 346


	Equivalence via Stochastic and ContinuousPetri Nets for Modeling of Large Systemswith Availability Constraints
	Abstract
	Keywords
	I. INTRODUCTION
	II. STOCHASTIC PETRI NETS FOR AVAILABILITY EVALUATION
	III. AVAILABILITY EVALUATION WITH SPNS
	IV. FLUIDIFICATION OF SPNS
	V. DISCUSSION AND CONCLUSION
	REFERENCES




