
An Empirical Study of Bad Smell in Code
on Maintenance Effort

Rohit Kumar
Chandigarh Engineering College, Mohali, (Punjab), India

Email Id: er.rkkansal@gmail.com

Jaspreet Singh
Assistant Professor, Chandigarh Engineering College Mohali, (Punjab), India

Email Id:cec.jaspreet@gmail.com

Amandeep Kaur
Assistant Professor, Chandigarh Engineering College Mohali, (Punjab), India

Email Id:cecm.infotech.amandeep@gmail.com

ABSTRACT - In this paper, we represent an automated code smell detection and refactoring tool for
calculating risk factor by detecting Code Smells and decrease risk factor by Refactoring Techniques.
Refactoring is a process for restructuring or improving internal structure of software without changing
its behavior. A new code smell (Lazy Catch) detection is also presented. To achieve this aim Declarative
Programming approach is followed along with object-oriented software metrics. Detection of Code Smells
is based on various Facts and Rules. We used this tool to detect the bad smells in oops based case studies
such as (C#, CPP, Java). That means this tool is independent of any language. Risk Factor level is
represented in three categories (Hi, Low, Medium).

KEYWORDS: - Code Smells, Risk Factor, Detection of Code Smell, Refactoring, Object Oriented Metrics.

I. INTRODUCTION

Today’s Software has become part of everyone’s life. The rule of software is its capability to make our lives
easier, get better productivity and efficiency [1]; but such efficiencies come at the cost of all-encompassing
observation, a characteristic that is produce a humanity that “never forgets”. Software system must be flexible
for extends. In the object oriented programming, it is effective way for this need to use the design patterns. The
design patterns may make unnecessary give, and may give more difficulty to design software [2]. Therefore,
future that use of design patterns in top process should be limited to special cases. Software system should be
flexible however, unnecessary agility lower quality of software system. It is significant to constantly keep up
with software maintenance process as it helps develop the system to execute to its best capability and to work
suitably in line with the user’s point [3]. A process can be explain as a development of the software’s defects
density or expansion of the software that leads to its efficient and suitable function within the system’s
environment.

Code smells have been defined [5] as sign of poor plan and execution choices. In some cases, such sign may
invent by activities performed by developers while in a speed, e.g., implement urgent patch or simply making
suboptimal choices. In other cases, smells come from some returning, poor design solution, also known as anti-
patterns. Refactoring is a reasonable way to solve this dilemma. [4] Proposed that "Refactoring is the procedure
of varying a software system in such a way that it does not modify the external activities of the code yet advance
its internal structure". In order to extend a high quality software system, it is vital to change software systems
into design patterns based as essential through refactoring.

Refactoring process consists of various activities:

1. Recognize where the software should be refectories.

2. Establish which refactoring(s) should be applied to the recognized places.

3. Agreement that the applied refactoring preserves behavior and Apply the refactoring [5].

4. Evaluate the consequence of the refactoring on quality distinctiveness of the software (e.g.,
maintainability ,difficulty, understandability) / the procedure (e.g., efficiency, rate, effort);

5. Continue the reliability between the refectories program code and other software object (such
as documents, propose documents, necessities specifications, tests and so on).

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 294

Detected code smells will differ depending on the preferred likelihood threshold. Growing the probability too
much will reason more false negative, while falling it in excess will grounds more false positives. It will be up
to the developer to fine adjust the threshold to get the sufficient level of advice as regards the occurrence of code
smells. It will also be up to the developer to choose on the sufficiency of relating a given refactoring to eliminate
a detected code smell [6].

Figure no: 1 Overview of Detection Method

II. BACKGROUND

This section gives procedural background to software maintenance process; code smell and software metrics,
threshold for software metrics and risk assessment.

2.1 Software Maintenance

Software engineering is the alteration of a software produce after delivery to correct mistakes, to modify
performance or other aspects. They must study how a plan functions before they can change it. They often
interrelate with complex and hard to understand systems [4]. Maintenance process is affected by programmer
expertise, occurrence, system documentation and the nature of the system itself.

2.2 Code Smell

Code smells are individuality of software that may specify a code or design difficulty and can make software
hard to evolve and maintain. To delete code smells and thus better maintainability and software progress we
have to apply refactoring steps to improve the inner quality of software [6]. It’s not essentially all the code
smells have to be removed, it depends on the system, now and then the smell cannot be removed, it is the best
solution; a typical example is given, in certain cases, by the code smell Large Class.[5]Detecting smells is
durable and costly. Hence when they have to be detached, it is better to remove them as early as possible. Tool
maintain for their detection is particularly useful, since many code smells can go ignored while programmers are
working. The dissimilar detection methods used by the detection tools are typically based on the computation of
a particular set of shared metrics, or standard object oriented metrics, or metrics defined ad hoc for the smell
detection reason.

2.3 Software Metrics

Software Metrics are a quantitative extent of software. In this article, we center of attention only on source
code’s metrics as referred to in the following Figure 2 [6]:

Figure no: 2 Object-Oriented Software Metric [6]

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 295

2.4 Thresholds for Software Metrics

Detection rules for code smells are frequently defined in the terms of metric categories or classifications. An
instance can be: “distinguish classes that have lower reliability” or “Classify methods that have a HIGH
difficulty”. We want to obtain thresholds in a method that they can be semantically mapped to these easy
necessities, to find out what LOW unity or HIGH difficulty means in terms of the metrics we use to measure the
unity and difficulty of the software [3].

2.5 Thresholds effects analysis

The threshold values are considered with the help of Value of Acceptable Risk Level using equation (1).Only
above reveal metrics are calculated with this formula. Table 3 shows the threshold values of preferred metrics at
different five risk levels of two different versions of jfreechart.
ܮܴܣܸ ൌ oሻ1ሺ ൌ 1 ോ o/1ሺlog ሺߚ െ oሻ െ ሻ. Equation (1)ߙ

The Threshold values of selected metrics are given with the value acceptable risk level formula, in which α and
β are the coefficient estimates and the probability o is suggested with different five risk levels i.e. (po = 0.5 to
po = 0.7). Threshold values with Equation 1 based on bad smell at diverse risk levels. Consequence shows some
metrics have effective threshold values for the metrics. We will use the fix threshold value.

2.6 Risk Assessment

To proposal the advance for a software system, the project manager should review the risks [8] opposite the
development attempt. There are several risk assessments methods so; they necessary a human involvement
depends on system attribute according to the system models it. Risk assessments are an exceptionally important
part in the administration development process.

III. RELATED WORK

This section evaluates before published studies on the effect of code smells. An organized literature review on
code smells and refactoring covered papers available by IEEE and sci-index software engineering journals and
Transaction from 2012 to 2014. That review found that Danphitsanuphan et.al, 2014 an advance for detecting
the so called bad smells in software recognized as Code Smell. In allowing for software bad smells, object-
oriented software metrics were used to detect the source code whereby Eclipse Plugging were developed for
detecting in which location of Java source code the bad smell show so that refactored the software could then
take place. The detected source code was classified into 7 types: Long Method, Parallel Inheritance Hierarchy,
Large Class, Long Parameter List, Lazy Class, Switch Statement, and Data Class. Francesca Arcelli, et al., 2015
Code smells are structural uniqueness of software that may specify a code or plan difficulty that makes software
hard to progress and maintain, and may activate refactoring of code. A current research is active in dining
automatic detection tools to help human in ending smells when code size becomes impossible for manual
review. Since the dentitions of code smells are casual and biased, assessing how ejective code smell detection
tools are is both main and hard to achieve. Dag I.K et,al, 2012 This paper examine the connection between code
smells and protection effort. Six developers were hired to execute three maintenance tasks each on four
functionally corresponding Java system initially implement by different companies. Each developer spent three
to four weeks. In total, they customized 298 Java files in the four systems. An Eclipse IDE plug-in measured the
accurate amount of time a developer used up maintaining each file. Regression analysis was used to give details
the effort using file property, including the number of smells.

IV. SOFTWARE ARCHITECTURE RISK BASED DETECTION TOOL

In this division, we converse the code smells detection tool Visual Studio which is based on the risk based
concept. The detection methodology depends on evaluating the code line by kept word, in case that the code is
method statement so the program will investigate for Long Method and Long parameter List, then the program
runs to check each line in the particular code to find any message chain or Empty Chain.

Figure no (3) shows the tool of user interface. The subsequent gives concise description of the user interface:

Figure no: 3 upload the project file

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 296

Above figure shows in the upper grey area, there are 2 options the first is used to Project and the other is used to
show code smells. Now click to project option, select upload your project file. Upload the three types of project
C++, Java and C#.net. To select the file name in D-drive name is Banking.sln. The loading all files in C++, java
and C#.net for training section.

Table no: 1 Risk Based Detection Tools

Code Smell Definition Variable used Results

 Long
Method

An extended and composite
method is divided into dummy
and well-named methods with
refactoring rules like extract
method. An explanation some
parts of the method may be
extracted as new techniques. As
a rule the extracted new
techniques are called within the
old one in the original position;
thus, the extraction does not
shorten the parameter list.

 Cyclomatic
complexity

 LOC

 Number Of
Methods

The numbers of lines of code
greater than 50 and variable are
not used. In this method used
Cyclomatic complexity (CC) >
50.

Uploading source code divided
into classes and methods.
According to abstract syntax
tree. Calculated object –
oriented matrices: Number of
line of code in method, total
number of variable, used
variable, unused variable,
Cyclomatic complexity and
Halstead efforts. Compare these
metrics with detection rules and
threshold value. Result
occurred in rule wise. Number
of method used = 99 and
Number of Long Method = 21.

Long Parameter
List

If the developer makes a
method with parameters, he
should know that the longer the
parameters list, the more
composite it becomes to
maintain this method. This code
smell is defined as many
constraints passed into a
method, this is different in
object-oriented, and long
parameter list method can be
restore by passing an object as
a substitute of the parameters
because long parameter list
technique is difficult to read
and modify.

 Number of
Parameter

 ∑n parameter of a
method

 Average Parameter

Basically the rule of this
method number of limitation is
greater than 7 (NOP>7), ∑n
parameter of a method = 148 ,
M for all method in C = 88 ,
average parameter = 3 and then
number of parameter are greater
than avg_parameter and some
of parameters are not used.
Detection method is same
applying only object oriented
metrics are different.

Large Classes Large classes to advance their
intelligibility and preserve,
large classes are categorized
into smaller ones, each for a
single dependability.

 Lines of Codes

 Instance Variable

 Depth of
Inheritance

 Coupling

Number of lines of code in
class LOC > 300, long method
> 5 , used instance of variable
id greater than 15 and methods
are greater than 10. Depth of
inheritance means” the greater
extent from the node to the root
of the tree”, DIP> 3 and
coupling is greater than 10.

Dead Code Dead code means, remove code
that isn't organism used. That's
why we have source control
systems.

 Unused Block of
data

Unused Block of data is totally
used is 24.

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 297

Lazy Class Lazy classes should particularly
requesting information from
exacting source their weight.
Each additional class enhances
the complexity of a project.

 Number of
methods or weight

 Lines of code

Number of method ==0,
LOC<=300 and weighted
method count or no. of method
<=2.

Lazy Catch
Block

Discover the empty catch
block, comparing number to the
threshold

 Number of Unused
catch block

Total number of unused catch
block = 5.

Duplicate Code Duplicate Code is duplicate if
more brief code exists that
explains the same functionality
like blocked repeated

 Number of
Duplicate code
block

Total number of Duplicate code
block is 19.

Switch
Statement

Switch statement contain one or
more switch sections. Each
switch section contains one or
more case label followed by
one or more statements.

 Number of cases

 Default case

 Complexity

In this statement used number
of cases greater than 10,
without default case and
complexity greater than equal
to 10 i.e complexity>=10.

Temporary
Field

If you're temporary an object as
a parameter to a technique,
make sure that you're using all
of it and not most desirable
single fields.

 Temporary Field Temporary field means
variables are not used and total
temporary field is 30.

Comment Line Comment lines means the aim
of making the resource code
easy to understand, and are
usually unnoticed by compilers
and line by line check code.

 Actual Source
Code

Comment lines more used
greater than 33% of actual
source code and classes = 2.

V. COMPARISON TOOLS

In this section, we evaluate some code smells tools each of them have dissimilar features.

5.1 Clock Sharp

Clock Sharp is a code organizer tool for C# Programming language integrated with visual Studio 2008 and
2010, it checks code using more than 100 programming rules, it can be executed as command line tool.

5.2 Find Bugs

Find Bugs is an open source plan works on java byte code appear for bugs in java code using still study to
identify four likely types of errors scariest and disturbing, of concern.

5.3 PMD (PROGRAMMING MISTAKE DETECTOR)

Source code analyzer that identifies troubles in five types class: bugs such as Copied or pasted code, Duplicate
code , empty try , empty catch , empty finally , empty switch , dead code , parameters and private methods ,
string usage , string buffer usage ,inefficient overcomplicated terminology, Sub optimal code, vacant local
variables, Dead code, avoidable statements, for and while statements.

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 298

Table no: 2 Comparison Tools

Comparison
Criteria

Developed Software Clock Sharp Find Bugs Programming
Mistake Detector

Tool Description Standalone Plug- in Tool Stand alone Plug-in Tool

Threshold Fixed Threshold value No threshold value No threshold
value

No threshold Value

Smell Filtration Can view all error
module wise

View all the errors
at the output

View all the
errors at the
output

View all the errors at
the output

Can work on
project /
language

C++,java and .net C# Java Java

User Interface User friendly Not user friendly User friendly User friendly

Results Represented in
graphics

Is too long to read Can be filter by
classes, packages

Not true error

Memory
Released

Yes - - -

Table 3: Comparison of Detection Methods used

Code Smell
Methods

Banking System
(Yes/No)

Movie Rental
Program (Yes/No)

Electricity
calculating
program(Yes/No)

Another Banking
System (Yes/No)

Long Method Yes Yes Yes Yes

Long Parameter
List

 Yes Yes No Yes

Large Classes Yes No NO No

Dead Code Yes No No No

Lazy Class Yes No Yes No

Lazy Catch Blocks Yes No No No

Duplicate code Yes No No No

Switch Statement Yes Yes Yes No

Temporary Field Yes No No No

Comment Lines Yes No No No

VI. SIMULATION MODEL

In our research work, we are source code would be choose in C++, java and C# (object oriented language).
Basically we are source code would be choose in C++, java and C# (object oriented language). At once detect
only one language code like we can select C# code. All methods are applying and testing c# language code or
you can say object oriented programming language.

The case study program is banking system c# / object-oriented Program. We will detect an error in all classes
using Code Smell detector, the code samples as Admin.cs and Adminlog.cs and etc. Visual Studio is the tool
used for analyzing the code. Bad smells would be detected using plug in –with-Visual Studio. Software metrics
plug- in would be applied on source code to calculate the metrics values for analysis and measure the quality of
source code. Apply applicable refactoring techniques to remove that detected bad smells. Refactoring using
“Visual Tool”. Then again apply Metrics plug-in to re-calculate the metrics values. Repeat the simplify/test
cycle until the smell is gone “without varying its peripheral performance”.

Various metrics for refactoring:

 Total lines of code
 Number of packages
 Method lines of code
 Number of classes

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 299

 Number of attributes
 Cyclomatic complexity
 Number of children
 Coupling
 Cohesion
 Depth of inheritance tree

Software specification:

Source code of a project in any language (C#, C++, java) is required to calculate the quality using software
metrics. The tool used to run the source code is required. For Example; Visual Studio and its plug-in.
DEODORANT plug-in is used to detect the bad smells in code. Metrics 1.3.6 is used to calculate the metrics
values.

Hardware Specification:

Determine what size portable Coordinate Measurement Machine is needed to reach around the surface geometry
of your physical model, or part. Size of digitizers may have restrictions, although this can frequently be dealt
with by using the leap frog feature which can be purchased as part of the refactoring eclipse plug-in. Conclude
what accuracy tolerance is required when refactoring of the physical mold, model or part.

It is always greatest to use a computer with a high end graphics card, with high end memory resources.

Figure no: 4 Flow chart of Research work

Significant Research work:

 Maintainability: It is easier to attach bugs since the source code is easy to read and the intent of its
author is easy to grasp. This capacity is achieved by dropping large monolithic routines into a set of
separately concise, well-named, single purpose method. It power be achieved by moving a method to a
more appropriate class, or by removing misleading explanation.

 Extensibility: It is straightforward to extend the capacity of the application if it uses recognizable
design patterns, and it provide some give where none before may have existed.

 Because of frequent changes of the source code its arrangement can be easily customized. Therefore, it
becomes very hard to reorganize the code and make its design inclusive.

 Correction makes software easier to understand.
 If it is not well considered, software is very hard to appreciate, particularly in a few months time.

Applying refactoring as untimely as possible during the software life-cycle can recover the feature of
intend and reduce the complexity and cost in successive development phases.

 Documentation: Refactoring plays an invaluable role. It is a great procedure if documentation to an
older device cannot be learned. One may need to know and understand the inner works of the device in
order to develop maintenance instructions, create an improved paradigm or to replace incomplete or
out-dated certification.

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 300

 Complexity: The complexity of the project is analyzed and calculated so as to understand the
scalability of the project.

 Code smells: Various types of code smells are generated using the refactoring.
VII. CASE STUDY

The case study full for recognition of bad smells is the banking system project in (.net, c++ and java) object
oriented language. The many bad smells are distinguished in the banking system source code using graphical
user interface application developed. The following metrics in .net are implemented to find out the methods of
bad smells in the source code.

Case Study in Various methods likes Long Methods, Long Parameter list, Large Classes, Dead Code Blocks,
Lazy Classes, Unused Catch Block, Duplicate code, Switch and Temporary Fields.

I. How to check long method?
There are numerous different code smells, but long a method is one of the mainly general and simply
corrected code smells. A long method is some method that is so extended it is hard to understand at a
fleeting look. Diverse entity programmers will have dissimilar opinion about how long is too extended, and
I don’t consider there is a single rule that would relate in all cases. Though, in universal you should prefer
methods that are shorter to those that are longer, technique that do only one object and methods whose
lengths permit them to be view on a single screen in their total.
Result long methods in your project are actually attractive easy to do using Visual Studio analysis tools. In
Visual Studio 2010, while you have the project you desire to Longmethod.cs open, click “TEST_CODE”
then “estimate Code Metrics for [Longmethod.cs].”

Pseudo Code of Long Method

Initialize the variables LocI=0, CCI=0, HALI=0,ci, datatype, x=0,count=0,s,semicolon and loc=0;
for (ci=0;ci < methods.Items.Count;ci++)

try
string[] data type = new string[] { " string ", " String ", " int ", " Int16 ", " Int32 ", " Int64 ", " float ", " double ", "
Double ", " Single ", " char ", " Char " };
for (int i = 0; i < array. Length; i++)
if statement (array[i] == ';') //to check the end of the lines through semicolon (LOC)
 loc++;
 end
end
if (vari. Contains(',')) // to find the colons
string[] variables = vari. Split(',');
 for (int j = 0; j < variables. Length; j++)
 if (s.Contains(variables[j] + " =") || s.Contains(variables[j] + " <=") || s.Contains(variables[j] + " >=") ||
s.Contains(variables[j] + " ==") || s.Contains(variables[j] + " +="))

 end
 else

 if condition (loc >= 50)
 if condition (count == 0)
 LOClongmethods [locI++] = methods. Items[ci].ToString();
 count++;
 end
end
else
if (s.Contains(vari + " =") || s.Contains(vari + " <=") || s.Contains(vari + " >=") || s.Contains(vari + " ==") ||
s.Contains(vari + " +="))

end
 else
 if condition (count == 0)

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 301

 LOClongmethods[locI++] = methods. Items[ci].ToString();
 count++;

 end
end

II. How to check Dead Code Blocks and Why to remove dead code?

It can be inaccessible code, unnecessary code, or unused code. Using the Code Analysis characteristic of Visual
Studio we can find it. The following are possible reasons to remove dead code:

1. At times we misuse a lot of time thoughts why a breakpoint does not hit a method/class.

2. To add to the code coverage result.

3. Code maintainability.

4. Recover performance.

To start adding rules to the Deadcode.cs rule set, you can investigate for a rule using either the rule number or
its name, as shown below. You can also simply increase the rule category and select the rules that you are
concerned in. All the dead code exposure rules are part of a particular rule set that make it much easier to direct.

Figure no: 5 Before correction to Find Detect Methods

In this figure shows that the long method is any method that is so long it is complex to understand at a glance.
But long a method is one of the most widespread and simply corrected code smells. Detect the code smell using
Long Method is 21, Number of Long Parameter List (LPL) = 4, no. of large classes =12, no. of dead code blocks
=22, no. of lazy classes=5, unused catch block=5, Duplicate code=5 like code clone, switch =3 and last one of
the least temporary field =30.

Figure no: 6 Before correction to Memory Used

Above figure shows that, the memory used to find in two categories total memory and unused memory.
Total memory value used is =80619 and unused memory value used is = 11678.

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 302

Figure no: 7 After correction to Find Detect Methods

In this figure shows that, to fresh up code smells, one must refactor. Refactoring is the process of humanizing
the superiority of the code without changing its exterior behavior. In the case of the long method smell, the
majority widespread way to refactor is to remove methods from the long method. In universal, the remove
method refactoring is one that can typically be done with the support of built-in tools in Visual Studio. To detect
the code smell no. of Long Method = 9, no. of Long Parameter List =0, no. of Large Classes=7, no. of dead code
blocks=0, no. of Lazy classes = 2, Unused Catch Blocks=0,Duplicate Code value is 0,switch value is 1 and
Temporary Field value is 0.

Figure no: 8 After Correction to Memory Used

In this figure shows that in this way, the technique can be broken up in to a compilation of smaller, more unified
methods. Total Memory value used is 68941 and Unused Memory value used is 0.

VIII. CONCLUSION AND FUTURE SCOPE

At last, we have to declare that compare the tools are very difficult, and in some cases also using them are not
very easy and urgent. The various code smells are detect in the banking system source code using graphical user
interface application developed. The calculated object oriented metrics shows the value of each metric in their
respective code smells detected on the coding. The purpose of this paper was not to evaluate the tools, but to
explain our experience in using them and draw the difficulties in the comparison task. The first experiential
study on the result of code smells on software maintenance effort in a prohibited industrial setting. We used
multiple linear regression analysis in which all of the smells were examine in the same mode. Code smells are
the mainly ordinary bad patterns connected to bad training practices which lead to deeper troubles in maintain
the software. Software products that surround code smells can be difficult to maintain. In this research effort, we
propose a tool for detecting code smells which uses the threat concept. As a verification of concept, we
developed an automatic risk based code smells detection tool. We used the tool to recognize problems in a C#

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 303

case study. Code smells, such as Long Method, Long Parameter list, Lazy Class, Dead code and comment Line,
Temporary field and Lazy Catch Block have been detected in the case study. To find total memory used and
unused memory (Before and after refactoring). Moreover, risk factor level has been qualitatively related (high,
low, Medium) with each code smell based on the rate of occurrence and the rigorousness of each code smell.
Main focus main ability index we plan to expand our developed software to sense other code smells and test the
tool using larger case study. We mainly focus on maintainability index decrease than risk factor will also
decrease.

Future Work we focus only on developer based experiment to duplicate Mantyla’s developer study and on an
investigation of the testing implication of smell suppression. The results accessible here are the first of many
smell studies and we receive further searching in this area, to enhance the maintained of software or system and
different fields.

REFERENCES:
[1] Erich Gamma, John Vissides, Ralph Johnson, Richard Helm: Design Patterns Elements of Reusable Object Oriented Software, Addi-

son Wesley Professional, 1995.
[2] Joshua Kerievsky: Refactoring to Patterns, Addison Wesley Professional, 2004.
[3] Danphitsanuphan, Phongphan, and Thanitta Suwantada. "Code Smell Detecting Tool and Code Smell-Structure Bug

Relationship." Engineering and Technology (S-CET), 2012 Spring Congress on. IEEE, 2012.
[4] Ito, Yu, et al. "A Method for Detecting Bad Smells and ITS Application to Software Engineering Education." Advanced Applied

Informatics (IIAIAAI), 2014 IIAI 3rd International Conference on. IEEE, 2014.
[5] Mens, Tom, and Tom Tourwé. "A survey of software refactoring." Software Engineering, IEEE Transactions on 30.2 (2004): 126-139.
[6] Fontana, Francesca Arcelli, et al. "Automatic metric thresholds derivation for code smell detection." Proceedings of the Sixth

International Workshop on Emerging Trends in Software Metrics. IEEE Press, 2015.
[7] Abdelmoez, Walid, Essam Kosba, and Ali Falah Iesa. "Risk-Based Code Smells Detection Tool." The International Conference on

Computing Technology and Information Management (ICCTIM2014). The Society of Digital Information and Wireless
Communication, 2014.

[8] Sjoberg, Dag, et al. "Quantifying the effect of code smells on maintenance effort." Software Engineering, IEEE Transactions on 39.8
(2013): 1144-1156.

[9] Van Emden, Eva, and Leon Moonen."Assuring software quality by code smell detection." Reverse Engineering (WCRE), 2012 19th
Working Conference on. IEEE, 2012.

Rohit Kumar et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 5 No.06 Nov 2016 304

