
Importance of Requirements Prioritization
in Parallel Developing Software Projects

Muhammad Yaseen 1, Aida Mustapha 1, Atta Ur Rahman 2, Sadiq Khan 3, Wajid Kamal 4

1 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia
2 Department of Computer Science COMSATS University Islamabad, Islamabad

3 Department of Computer Science, International Islamic University Islamabad
4 Department of Computer Science and Software Technology, Abasyn University Peshawar

yaseen_cse11@yahoo.com

Abstract— Prioritizing software requirements is important and most difficult task during requirement
management phase of requirement engineering especially when requirements are large in size. Large size
requirements like Enterprise Resource Planning (ERP) system are difficult to manage and implemented
by single developer. Requirements can be distributed in parallel team members. Requirements are
dependent on each other, so for implementation of particular requirements, the pre-requisite
requirements should be implemented first. Some requirements are needed for one team member, some
for many and some for none. Giving importance and priority to some requirements over the others is
necessary so that requirements can be available on time to developers. In this research work,
requirements are prioritized on the basis of their implementation and importance with graph based
approach. From directed graph, one can easily find set of all requirements which need particular
requirement. Through experiment conducted on requirements of ODOO ERP, requirements are
prioritized and time estimation is reduced. Time reduction and better management of requirements will
cause successful delivery of software projects.

Keywords- Functional Requirements, Requirements Prioritization, Directed Acyclic Graph.

I. INTRODUCTION

Requirement Engineering is the systematic and discipline way of collecting user requirements for software
system [1][2][3]. Requirements Prioritization (RP) is giving priority or ordering to requirements and is
important activity during efficient requirements management [4][5][6]. There are five types of requirements i.e.
Business Requirements (BRs) deals with benefits of implementing requirements [7][8][9], Process
Requirements (PR) deals with time and cost issues of requirements [10][8], User Requirements (URs) are those
requirements which comes from user [11][12], Functional Requirements (FRs) are those requirements which are
necessary for software and which the system must do [13] [14] and Non Functional Requirements (NFRs) like
usability, security, performance etc. [15][16]. Techniques like ‘Cost value ranking’, ‘Attribute goal oriented’,
‘Value oriented’ are suggested for prioritizing BRs [17]. Some of the techniques like ‘AHP’, ‘Binary tree’,
‘value based’, ‘genetic algorithm’, ‘’ are suitable for prioritizing URs and FRs [18] and techniques like ‘QFD’,
‘Contextual preference based technique’ are suggested for NFRs [19]. Although most of the techniques like
AHP work well for small size requirements but fails on large size requirements. Techniques like ‘Machine
Learning Based’ ‘SNIPR’, ‘ANN based’, are suitable for prioritizing large size URs but are not applied to
prioritize FRs from developer’s perspectives [20]. FRs prioritization bears more significance especially when
parallel team members are going to implement the requirements. Giving importance and priority to some
requirements over the others is necessary so that requirements can be available on time.

II. BACKGROUND STUDY

The Analytical Hierarchy Process (AHP) is the most famous, most used and simplest technique for RP. AHP
prioritization is performed pairwise by comparing each and every requirement against each other. For n
requirements, then n (n-1)/2 comparisons will be needed. For example, if the number of requirements is ten then
AHP will perform forty five times comparisons of the requirements. If the requirements increase in size, so does
the processing time. If the requirements is a thousand, there will be 1000*(1000-1)/2 = 499,500 comparisons,
which is both very time consuming and difficult to execute. Because the technique is time consuming, it is not
scalable for big requirements due to the pairwise comparisons for every requirement [21]. Cost Value Approach
is also a famous technique whereby this technique assigns cost and value to each requirement and prioritize
accordingly. Sometimes requirements are valued but cost is high and sometimes cost is low but requirements are
not so valued and vice versa. This approach prioritizes based on dependency of cost and value on each other [7].
In Numerical Assignment [22] technique we divide and place requirements in groups according to the
instructions of stakeholders. All the requirements in a group have same priority. The main problem with
numerical assignment is that there is not standard criteria of defining groups, therefore leads to implementation
of all requirements. In this approach, the requirements are categorized in three groups, which are critical,

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 171

standard and optional. Cumulative voting is also known as 100 dollar method of RP. In this technique, 100
dollars are given to stakeholders and they assign dollar value out of 100 to every requirement. Nonetheless, this
technique is suitable for a small group of stakeholders. Project having many stakeholders will be difficult to
manage and prioritize using this technique [10] [23]. In Goal-based Technique, the goals of the customers are
considered. Some requirements are implemented in first version, while some are implemented in subsequent
releases. The goals can be low cost, quality or any selected features [14]. In [20], the goal-based technique was
used during the requirement elicitation process. The proposed elicitation algorithm consist of 3 steps; (1) collect
requirements using goal-oriented approach from the customers, (2) calculate cost and effort for each
requirement, and finally (3) perform pairwise comparison based on AHP and prioritized accordingly [17].
Genetic algorithms (GA) are used as a technique for reducing the number of comparisons during RP. Using this
technique, the knowledge is extracted from user and the requirements are prioritized accordingly [24].

III. GRAPH BASED APPRAOCH

3.1. Directed Acyclic Graph

This paper proposes a directed acyclic graph (DAG) approach for inter-relating and prioritization of FRs. Graph
based approach is used in other study to inter-related FRs [25]. The inputs are the FRs collected from any
sources using appropriate elicitation technique and must be specified in the form of Software Requirement
Specification (SRS). In this research, FRs are represented as alphabets R1, R2. Rn enclosed in circles as nodes.
Figure 1 shows DAG inter-relating FRs. In Figure 1, R1 is required for R2 and R3 while R3 is required for R4.

Figure 1: Representing FRs with DAG

The purpose is to apply efficient algorithms of graph that are helpful to give enough information’s about
requirements. Two types of information’s are about requirements are required. First is the chain priority or
implementation priority of requirement i.e. which requirement is necessary for the completion and
implementation of requirement and second is set of all requirements are needed for which a particular
requirement is necessary. E.g. A is required for B and B is required for C and D. Then A is required for B, C,
and D. The following algorithm are used in our study:

3.2. Spanning Trees from Directed Acyclic Graph

Depth first search (DFS) is a method use to explore a graph using stack as the data structure [26]. It begins from
the root of the graph, explore its first child, explore the child of next vertex until reach to the goal vertex or
reach to final vertex having no further child. At that point, back following is utilized to give back the last vertex
which is not yet totally explored. Modifying the post-visit and pre-visit, DFS is used to solve many important
problems and it takes O (|V|+|E|) steps [12].

 DFS algorithm traverses a graph in a depth ward motion and uses a stack to remember to get the next vertex to
start a search, when a dead end occurs in any iteration [27][28][29][30].

This algorithm works according to the following rules.

Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices from the
stack, which do not have adjacent vertices.)

Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

Spanning trees can be found in linear time by simply performing breadth-first search or depth-first search. These
graph search algorithms are only dependent on the number of vertices in the graph, so they are quite fast
[31][32]. Figure 2 shows different FRs inter-related with DAG.

R1 R2 R4

R3

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 172

Figure 2: DAG used for making spanning tree

The resulted spanning trees of graph of Figure 2 are shown in Figure 3 respectively. We can see that four
spanning trees are resulted. Height of tree shows the level of requirement in tree which can benefit in
prioritization. Through DFS, one can easily calculate the height of tree. The following steps are included to
calculate the height of spanning tree.

1. Start from root node, through DFS, move to the leave nodes and count the values of requirements in depth
until the last node is reached. The value of count will determine the depth of particular chain.

2. Similarly repeat the same process for other chains through DFS.
3. The maximum count of any chain shows the depth or height of a tree.
4. If requirement is common in more than one chain, then maximum count will determine height of that

requirement.

Figure 3: Resulted spanning trees from DAG of Figure 2

IV. EXPERIMENT

Requirements priority is based on how much they are needed or dependent for other requirements so that timely
delivery of project can be assured. In most of the studies, delay in projects and cost issue are highlighted as
reason of failure of projects. There are two kinds of delay that can occur in projects. Critical delay and non-
critical delay. Critical delay is one which can delay the whole project. Critical path is that in which all
requirements are tightly connected without any slack and delaying any requirement can delay a whole project.
Another kind of delay is non-critical delay which doesn’t affect the overall delay of project. In such case,
requirements are not on the critical path. The purpose of prioritization is not only to reduce critical delay but
reducing non-critical delay is also necessary so that timely delivery of requirements can also be assured and this
will not let developers to wait too much for requirements because requirements for implementation will be
available in time.

4.1. Hypothesis: In order to prioritize important requirements, the following hypothesis are finalized.

Hypothesis: H1 (Null): Requirements priority depends on how much they are needed for other requirements.
Requirements priority increases when its need for other requirements increase.

R1

R2 R3

R4 R5

R7 R8 R10

R13

R9 R11

R6
R14

R12

R2

R1

R4

R3

R1

R5

R3

R1

R6

R7 R8

R9

R10 R11

R13

R12

R14

R3

R1

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 173

Hypothesis: H1 (Alternative): Requirements priority not always depends on how much they are needed for
other requirements. Requirements priority not always increases when its need for other requirements increases.

Figure 4: FRs represented with different spanning trees

We have to compare the priority of R1, R9 and R12 of Figure 4. Chain priority of all requirements are same i.e.
2 but all these are needed for different number of requirements. If single person is going to implement all these
requirements than either a developer implement R1, R9 or R12, the overall efforts or total time estimation will
remain same because single person will develop all the requirements. If requirements are distributed between
two developers as shown in Figure 5 e.g. one member implements R1, R9 and R12 and may implement other
requirements and some requirements are given to team member B. We make different scenarios for distributing
these requirements.

Figure 5: Distribution of requirements in two teams

Requirement R1 is required for R6, R7, R8 and R17. When R1 is implanted and R6 starts implementing then
during implementation of R6, R9 will be implemented but R7, R8 and R17 will still wait for R6 completion
because developer can implement only one requirement at time. After completion of R6 and R9, R7, R8, R17
and R10 are available for implementation. So we can say that either R6, R7, R8 or R17 wait for completion of
R10 or either R10, R7, R8, R17 wait for the completion of R6, the delay is same in both cases. On the other
hand if developer gives more priority to R9 instead of R1, then after completion of R9, both R10 and R1 can be
implemented on same time, then R6, R7, R8 and R17 will wait for R10. Either R9 implement first or r1
implement first, waiting time or overall delay will be same.

Figure 6: Relationship of requirements distribution and priority

R1

R R3 R R5 R R7 R8

R1

R1 R6 R7 R8 R17

R9 R10

R12 R13 R14 R15 R16

R9

R10 R11

R12

R16
R15 R14

R13

R1 R9 R12 R2 R3 R4 R5 R11

R6 R7 R8 R17 R10 R13 R14 R15 R16

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 174

Up to now we have found that the priority of R1 and R9 are same. Now compare priority of R1 with R12 as
shown in Figure 6. As both are required for four other requirements but the difference is that one of the
requirement R16 that needs R12 is to be implemented by team R3. Now two requirements i.e. R16 and R13 will
be implemented in parallel. Requirements that need team member “A” requirements are implementing by one
team member while requirements of R12 by two team members so delaying R12 can delay two teams’
requirements.

Figure 7: Distribution of requirements, with second team containing only two modules requirements

In case 2 as shown in Figure 7 , if we give more priority to requirement R1 than R11 will wait for R9 and this
will delay the project because there is no requirement with team B that need R1 that can be implemented first to
avoid the delay. Although R1 is required for eight other requirements but all the requirements are to be
implemented by same team member A. we implement either R1 or R12 first, it will not affect the overall
estimation time of A but it will delay team member B requirements because the depended requirements of R9 or
R12 have to wait. The overall estimation time can also be affected if the total estimation time of B requirements
is greater than total estimation time of A, then by giving priority to R1 will delay the whole project. As A has no
depended requirements in team B, so it will be better to implement it after R12 or R9. If one of the requirement
in R11 and R10 is given to team ‘A’ then still the priority of R9 will remain the same because team can work on
one requirement at the one time. From this we can conclude if requirement is required for other requirements
and that are to be implemented by same team member than this increase in importance of that requirement
doesn’t contribute to its increasing priority. Priority can be assigned on the basis of how much team members
need a particular requirement.

From above hypothesis we can conclude that priority of requirement not depend on how much they are needed
in number but how much they are needed by different teams. So null hypothesis is rejected and alternative
hypothesis is supported.

Hypothesis: H2 (Null hypothesis): “If two requirements that are required for same number of other
requirements but with different chain priorities or height in spanning tree have always same importance”

H2 (Alternative hypothesis): “If two requirements that are required for same number of requirements but with
different chain priorities have unlike importance”

Figure 8: Same number of requirements but with different levels

We are comparing R1 and R6 of Figure 8, both requirements are required for four other requirements but
depended requirements of R1 are not dependent on each other and all have same priority and height in tree while
requirements of R6 are all dependent on each other with different priorities with tree height of 4.

4 5

1

2 3

6

7

8

9

10

R1 R9 R12 R2 R3

R16

R4 R6 R6 R7 R8 R17

R11 R9 R13 R14 R15

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 175

If single team member implements all the requirements then there is no benefit of prioritizing requirements on
the basis of how much important they are. They all will be consider equally important as concluded from the
above hypothesis. Now increase the number of team members e.g. we take three team members A, B and C as
shown in Figure 9 and Figure 10 respectively.

Figure 9: Equal distribution of two module requirements on teams

Figure 10: Equal distribution of two module requirements on teams with only swapping of R1 and R6

In such case where depended requirements of both R1 and R6 are equally distributed in same ratio on team
member B and C and have same impact on overall delay. Because when we first implement R6, then R7 will be
implemented and R8 in parallel shall wait for R7 and during this during R1 can start implementation. After
completion of R8, R9 will start implementation but R10 will wait. After completion of R10, rest of the
requirements that needed R1 can be implemented in parallel. If we implement requirements of R1 before the
requirements that need R6, waiting time and total estimation time will remain same. Suppose all requirements
take same hours’ time of 10 hours to implement than the total estimation time of both cases will be same i.e. 70
hours. Now suppose all requirements of R6 are assigned to team B and requirements of R1 to team C as shown
in Figure 11 and Figure 12 respectively.

Figure 11: Second team get first module requirements and third team gets third get second team requirements

R1 R2 R3

R4 R5 R6

R7 R8

R10 R9

R6 R2 R3

R4 R5 R1

R7 R8

R10 R9

R1 R2 R7

R3 R8 R6

R4 R9

R10 R5

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 176

Figure 12: Modification in figure11 by swapping R1 and R6.

In such case still the total estimation time will be not effected. The reason is that one team member can
implement only one requirement, in this case, B gets all requirements that need requirement R1 and C gets all
requirements that need R6, but these team members can only implement single requirement at one time as stated
before, so the effect reduces to single requirement at time only. If team A implement some of requirements of
R6 e.g. R7 and R8 as shown in Figure 13 and Figure 14 then in this case the ratio of distribution is not same but
both teams are implementing requirements of both R1 and R6. From this we can conclude that equal number of
requirements are not necessary for teams, but equal distribution is necessary. If teams B and C are implementing
requirements that need R1 and R6, priority will remain same although number of requirements are not same.

Figure 13: Two requirements of third team of figure 12 are to be developed by first team

Figure 14: Modifications in figure13 by swapping R1 and R6

Suppose all requirements take same time of ‘10 hours’ to complete their implementation. Total estimation time
will be 60 hours, either we give priority to R1 or R6. Now after bringing changes in above cases, we have
increased the team member’s size as shown in Figure 15 and Figure 16.

Figure 15: Distribution of requirements in five teams

R6 R2 R7

R3 R8 R1

R4 R9

R10 R5

R1 R2

R7

R3

R8

R6

R4

R9

R10

R5

R6 R2

R7

R3

R8

R1

R4

R9

R10

R5

R1 R2

R3 R6

R9

10 R8

R7 R4

R5

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 177

Figure 16: Modifications in figure 15 by swapping R1 and R6

Team B and C get requirements of R1 while D and E get requirements of R1. In this case though requirements
are equally distributed but no team member implement requirements that need both R1 and R6. In first case,
after implementing R1, it is available for R2 and R3 and both of them can be implemented in parallel. During
this implementation R6 will start its implementation. After R6 completion, team member D can start
implementing R7 but R8 cannot be implemented in parallel, team member E will wait for R7 and after
completion of R7 then R8 can be implemented because R8 needs R7. Similarly after R8, R9 and then R10 will
be implemented. Implementation of R7, R8, R9 and R10 takes a lot of time as they are implemented one after
another. Suppose each requirement of Figure 15 and Figure 16 take 10 hours, then these four requirements will
take 40 hours. If we give low priority to R6 which is needed for these four requirements, then total time will
equal total time for these four requirements and R1 with R6. If each requirement takes 10 hours than total time
will become 60 hours. But if we give more priority to R6 then time will reduce to 50. Delay of R2, R3 and R4,
R5 will not delay the whole project as these requirements can be implemented in parallel, so if R1 is delayed
than parallel development of these requirements will not delay whole project. So we can conclude that if single
team is implementing requirements or multiple two team members than prioritization has no effect on total
estimation time. In neither case we can say that R1 get more priority than R6, so it’s better to implement R6
always before R1. Thus Null hypothesis is rejected and proved that requirements that are required for same
number of other requirements but with different chain priorities have not always alike in importance. Let’s
suppose along with R1 and R6, team member A in above case is implementing R9 and 10, which means
member D and E are only implementing R7 and R8. In this case the priority of R6 become decreased. Now at
this level we will check the total estimation time of all teams. In this case total estimation is same either we
implement R1 or R6 first. The team which takes more time to implement its requirement will be the total
estimation time of project. In above case team member B and C takes maximum time where R9 and R10 are to
be implemented by team member A as compare to D and E, so requirements of D and E will not delay the
project by giving low priority to R6 as compare to R1. So besides from height of requirement or chain priority
of requirement, sum of estimation times of individual requirements of particular team member is also necessary.
While comparing two requirements, one with maximum height and other with maximum requirements, we will
check estimation time of all other requirements which need these requirements and if estimation time is found
same or maximum of requirements of maximum height than priority should be given to requirement with
maximum height else priority will be consider same. Requirement that is needed for maximum requirements but
possess low chain priority can have high priority if it is needed for maximum team members as compare to that
requirement which high chain priority but needed for lesser team members because delaying this requirement
will delay maximum team members requirements. For example in case shown below, R1 Priority will be high
because it is needed for two members requirements while priority of R6 will be low. We can see the effect as
delaying R1 can delay R2 and R3 of team member B but delaying any requirement R1 or R6 have no impact on
delay of team member C requirements because team member C have available requirements that need both R1
and R6.

V. PRIORITZATION RULES

Based on the hypothesis presented in above section, we can formulate certain rules while prioritizing
requirements. Summary of rules in the light of above hypothesis are given below:

1. If only single team member is going to implement all the requirements, then all requirements are
consider to be of same importance. Priority will be given to requirements on the basis of chain priority
in this case.

2. If multiple team members are going to implement the requirements, then priority will be given to those
requirements that are needed for requirements of other team members. Importance of requirement will
not increase with number of its need for other requirements, it will be decided on how much maximum
teams require this particular requirement.

3. If the importance of two requirements found to be same in terms of its need for other teams then
priority should be given on the basis of its height in tree or chain priority. Maximum height means
more priority.

R6 R2

R3 R1

R9

10 R8

R7 R4

R5

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 178

VI. CONCLUSION

In this research work, a prioritization rules are presented that can prioritize FRs from developer’s perspective.
Prioritizing FRs will not help only in easy management of requirements i.e. which requirements are needed for
other requirements but will help in prioritizing important requirements that are required for requirements of
other team members of parallel development projects. From experiments, we have concluded that importance of
requirement not only increases with how much they are required for other requirements but how much it is
required for different team members. Different team members can wait for particular requirement and this
waiting time can delay the overall project so by prioritizing important requirements on the basis of how much
they are required is essential. Through this framework, developers can easily implement prioritize requirements
that can reduce total estimation time of the project.

Reference
[1] Z. Ali and M. Yaseen, ‘Critical Challenges for Requirement Implementation in Global Software Development : A Systematic

Literature Review Protocol with Preliminary Results’, vol. 182, no. 48, pp. 17–23, 2019.
[2] M. Yaseen, S. Baseer, and S. Sherin, ‘Critical Challenges for Requirement Implementation in Context of Global Software

Development : A Systematic Literature Review’, pp. 120–125, 2015.
[3] M. Yaseen and M. A. Awan, ‘Practices for Effective Software Project Management in Global Software Development : A Systematic

Literature Review’, vol. 177, no. 36, pp. 1–6, 2020.
[4] M. Yaseen, A. Mustapha, and N. Ibrahim, ‘MINIMIZING INTER-DEPENDENCY ISSUES OF REQUIREMENTS IN PARALLEL

DEVELOPING SOFTWARE PROJECTS WITH AHP’, vol. 8, no. Viii, 2019.
[5] M. Yaseen, A. Mustapha, and N. Ibrahim, ‘An Approach for Managing Large-Sized Software Requirements During Prioritization’,

2018 IEEE Conf. Open Syst., pp. 98–103, 2019.
[6] M. Yaseen, N. Ibrahim, and A. Mustapha, ‘Requirements Prioritization and using Iteration Model for Successful Implementation of

Requirements’, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 1, pp. 121–127, 2019.
[7] Z. Ali, M. Yaseen, and S. Ahmed, ‘Effective communication as critical success factor during requirement elicitation in global software

development’, vol. 8, no. 03, pp. 108–115, 2019.
[8] M. Yaseen and Z. Ali, ‘Success Factors during Requirements Implementation in Global Software Development : A Systematic

Literature Review’, vol. 8, no. 3, pp. 56–68, 2019.
[9] M. Yaseen and Z. Ali, ‘Practices for Effective Communication during Requirements Elicitation in Global Software Development’, vol.

8, no. 06, pp. 240–245, 2019.
[10] M. Yaseen, ‘Effective Negotiations Practices in Global Software Development : A Systematic Literature Review’, vol. 9, no. 1, pp.

87–91, 2020.
[11] M. Yaseen, S. Ali, . A., and N. Ullah, ‘An Improved Framework for Requirement Implementation in the context of Global Software

Development: A Systematic Literature Review Protocol’, Int. J. Database Theory Appl., vol. 9, no. 6, pp. 161–170, 2016.
[12] M. Yaseen, R. Naseem, Z. Ali, and G. Ullah, ‘IDENTIFICATION OF CHALLENGES DURING REQUIREMENTS

IMPLEMENTATION IN GLOBAL SOFTWARE DEVELOPMENT : A SYSTEMATIC’, vol. 4, no. 1, pp. 23–40, 2019.
[13] M. Yaseen and U. Farooq, ‘Requirement Elicitation Model (REM) in the Context of Global Software Development’, Glob. J. Comput.

Sci. Technol., vol. 1, no. 2, pp. 1–6, 2018.
[14] M. Yaseen, S. Baseer, S. Ali, S. U. Khan, and Abdullah, ‘Requirement implementation model (RIM) in the context of global software

development’, 2015 Int. Conf. Inf. Commun. Technol. ICICT 2015, 2016.
[15] M. Yaseen, A. U. Rahman, I. U. Rahman, Z. Ullah, and M. Bacha, ‘Inter-organizational Learning and Knowledge Sharing

Management in Global Software Development’, vol. 8, no. 1, pp. 52–57, 2020.
[16] M. Yaseen, N. Sarwar, M. Ali, and A. U. R. Rahman, ‘Colloboration as Success Factor during Requirement Elicitation in Global

Software Development’, vol. 6, no. 3, pp. 39–46, 2020.
[17] N. Garg, M. Sadiq, and P. Agarwal, ‘GOASREP : Goal Oriented Approach for Software Requirements Elicitation and Prioritization

Using Analytic Hierarchy Process’, pp. 281–287, 2017.
[18] M. Yaseen, A. Mustapha, N. Ibrahim, and U. Farooq, ‘International Journal of Advanced Trends in Computer Science and Engineering

Effective Requirement Elicitation Process using Developed Open Source Software Systems’, vol. 9, no. 1, 2020.
[19] M. Yaseen, I. Journal, M. Yaseen, A. Mustapha, M. A. Salamat, and N. Ibrahim, ‘International Journal of Advanced Trends in

Computer Science and Engineering Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse09912020.pdf
Prioritization of Software Functional Requirements : A Novel Approach using AHP and Spanning Tree’, vol. 9, no. 1, 2020.

[20] N. Setiani and T. Dirgahayu, ‘Clustering Technique for Information Requirement Prioritization in Specific CMSs’, 2016.
[21] M. A. Iqbal, A. M. Zaidi, and S. Murtaza, ‘A new requirement prioritization model for market driven products using analytical

hierarchical process’, DSDE 2010 - Int. Conf. Data Storage Data Eng., pp. 142–149, 2010.
[22] A. K. Massey, P. N. Otto, and A. I. Antón, ‘Prioritizing Legal Requirements’, vol. 1936, no. 111, 2010.
[23] P. Chatzipetrou, L. Angelis, P. Roveg??rd, and C. Wohlin, ‘Prioritization of issues and requirements by cumulative voting: A

compositional data analysis framework’, Proc. - 36th EUROMICRO Conf. Softw. Eng. Adv. Appl. SEAA 2010, pp. 361–370, 2010.
[24] P. Tonella, A. Susi, and F. Palma, ‘Interactive requirements prioritization using a genetic algorithm’, Inf. Softw. Technol., vol. 55, no.

1, pp. 173–187, 2013.
[25] M. Yaseen, A. Mustapha, S. Qureshi, A. Khan, and A. U. Rahman, ‘A Graph Based Approach to Prioritization of Software Functional

Requirements’, vol. 9, no. 3, pp. 64–73, 2020.
[26] L. G. Algorithms, ‘Depth-first search and linear graph algorithms*’, vol. 1, no. 2, pp. 146–160, 1972.
[27] M. M. Asadi, H. Mahboubi, J. Habibi, A. G. Aghdam, and S. Blouin, ‘with Application to Underwater Sensor Networks’, pp. 1–8,

2017.
[28] L. Arge and N. Zeh, ‘I / O-Efficient Strong Connectivity and Depth-First Search for Directed Planar Graphs’, 2003.
[29] K. Jun, ‘Depth-First-Search based Region Merging for the Waterfall’, pp. 540–545, 2015.
[30] M. Weigel, ‘Connectivity algorithm with depth first search (DFS) on simple graphs Connectivity algorithm with depth first search (

DFS) on simple graphs’, pp. 4–8, 2018.
[31] M. Usman, D. Sakethi, R. Yuniarti, and A. Cucus, ‘The Hybrid of Depth First Search Technique and Kruskal ’ s Algorithm for Solving

The Multiperiod Degree Constrained Minimum Spanning Tree’, no. Icidm, pp. 0–3, 2015.
[32] S. Dhingra, ‘Finding Strongly Connected Components in a Social Network Graph’, vol. 136, no. 7, pp. 1–5, 2016.

Muhammad Yaseen et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 179

	Importance of Requirements Prioritizationin Parallel Developing Software Projects
	Abstract
	Keywords
	I. INTRODUCTION
	II. BACKGROUND STUDY
	III. GRAPH BASED APPRAOCH
	IV. EXPERIMENT
	V. PRIORITZATION RULES
	VI. CONCLUSION
	Reference

