
A Novel Optimized QCA 4:1 Multiplexer
Circuit Using Genetic Algorithm

Som Banerjee
Dept. of Computer Science and Engineering

Modern Institute of Engineering and Technology, Hoogly, India
sombanerjeecse@gmail.com

Chandrama Dey
Dept. of Electronics and Communication Engineering

Pailan College of Management and Technology, Kolkata, India
chandramadey1992@gmail.com

Abstract—With the rapid development of very large scale integration (VLSI) technology, it has became
necessitate to design circuits with high operational speed with area efficiency and high device density. The
quantum dot cellular automata (QCA) technology can be a very promising alternative to CMOS technology
to maintain the progression of exponential Moore’s law in the field of microelectronics. Majority gates and
inverters are the fundamental blocks in quantum dot cellular automata circuits. In QCA, most important
step is to reduce number of required majority gate and inverter for implementing a given Boolean function.
This manuscript demonstrates a new method for reduction of number of majority gates and inverters in
4:1 multiplexer by implementing methodology on the basis of genetic algorithm. It has been proved that by
implementing this proposed method less cell count, total area, cellular area and clock cycle are needed.
Applying this proposed genetic algorithm and fitness function, any QCA based digital logic circuit can be
optimized to obtain improved and efficient result.

Keywords—Quantum-Dot Cellular Automata, Majority gate, QCA clock, Genetic Algorithm, Fitness Function,
Optimization, Multiplexer.

I. INTRODUCTION

Quantum-Dot Cellular Automata (QCA) has evolved as a significant alternative in nano scale computing also
known as quantum computing [1]. It was first proposed by C. S. Lent in 1993 [2]. QCA takes advantage of
operation speed at Tera Hz frequencies, low power consumption and high device density [2-8]. Traditionally
circuit is optimized using karnaugh map by creating the expression into two forms, sum of products (SOP) and
product of sums (POS) but this form of majority expression is difficult to make due to multilevel majority gates
[9-10]. For overcoming this scenario, a new optimization technique is proposed which follows the principle of
genetic algorithm (GA). Genetic algorithm works on the theory of natural evolution and its main concern is to
find optimal solution for any circuit [11-13].

 This manuscript shows a technique for optimization of 4:1 multiplexer circuit using genetic algorithm.
Parameters such as gate count, clock cycle are considered for the systematic action of optimization. The objectives
of this manuscript are given below.

 A new fitness function calculation for 4:1 multiplexer is done which is used for calculating the best
optimal solution for multiplexer circuits.

 A new algorithm and methods for optimizing 4:1 multiplexer is done by following the previously
proposed method of multiple output genetic algorithms (MOGA).

 Finally the presented technique is applied and simulation is executed and comparison is done between
the presented technique and the previously done techniques.

II. BACKGROUND

A. Quantum-Dot Cellular Automata (QCA)

QCA cell is a square unit block consisting mainly of a charge container that contains four quantum dots. Each
dots interact among each other through a metallic tunneling .When two extra free electrons are inserted in the cell,
electrons start to repel because of their mutual electrostatic repulsion and occupies opposite corners of the cell i.e.
the antipodal site [16-17]. This whole process is known as cell polarization and is expressed as P. To represent
logic ‘1’ P= +1 is used and to represent logic ‘0’ P= -1 is used. Structure of QCA cell polarization is shown in
Figure 1(a).

1) QCA wire: QCA is an array representation where binary information is passed from input to output. The
polarization of a cell is influenced by that of its neighboring cells. Two types of wires are 90 and 45 degree as
shown in Figure 1(b) and Figure 1(c) respectively.

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 137

2) QCA inverter: When QCA cells are diagonally placed it behaves as NOT gate i.e. inverter (inv). Because of
the property of electrostatic repulsion between cells, this conversion of logic ‘0’ to logic ‘1’ and logic ‘1’ to logic
‘0’ takes place as described in Figure 1(d).

3) QCA majority gate: Majority Gate (maj) is the basic gate used in QCA for the formation of any logic circuits.
The majority logic gate consists of an arrangement of five standard cells that is shown in the Figure 1(e). It
generally contains 3 inputs and by taking into account the inputs present in majority, output is calculated. By
fixing the value of polarization, AND, OR gates are formed. Equation to represent majority gate is shown in (1).

 M ሺA, B, Cሻ ൌ AB ൅ BC ൅ CA (1)

(a)

(b) (c)

(d)

(e)

Figure 1.(a) QCA cell with polarization P (b) QCA 90° wire (c) QCA 45° wire (d) QCA inverter (e) QCA Majority Gate

B. Genetic algorithm

Genetic algorithm (GA) can be described as an evolutionary algorithm in which different types of computer
program of dynamic variance of sizes and shapes are evolved to solve a particular problem. By using the
Darwinian principle for natural selection, the populations of a computer program is genetically evolved. The
genetic algorithm highlights the process of natural selection in which the fittest individual is selected for
reproduction so that it can produce a new offspring for the next generation to continue. Natural selection begins
by selecting the fittest individual from a population. They produce a new offspring which inherits the parent
characteristics. If parent is having a better fitness, their offspring will be better than their parents having better
chance of survival [11-13]. An iteration process keep on going and at the end the fittest individual is found. The
six main phases of genetic algorithm are discussed below.

1) Initial Population: In genetic algorithm, initial population is the selection of random individual in the form of
chromosomes. Tree is represented here as chromosome as shown in Figure 2. In this structure, majority gates and
inverters are taken as internal node and the nodes where inputs and logical one ‘1’ are present are considered as
external node [12].

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 138

Figure 2. Chromosome [M(M(I1,S0,0),1,A)]

2) Fitness Function: In genetic algorithm, fitness function examines that how fit the individual is i.e. the potential
of a particular individual to compete with another individual. It generates fitness score value to every individual.
The probability of an individual to be selected for reproduction is completely based upon its fitness score value.

3) Selection: In genetic algorithm, selection is the procedure to select a particular chromosome before applying
genetic algorithm over it. Selection is one of the most important factors because it determines the probability of
getting the expected output.

4) Crossover: In genetic algorithm, crossover is the procedure of exchanging a sub-tree of a chromosome with a
sub-tree of another chromosome. Crossover application in genetic algorithm makes the chromosomes a situation
to go for a combination logic thereafter reducing the complexity of the circuit [13]. Crossover takes place with
the probabilities Pc.

5) Combine: In genetic algorithm, after crossover operation takes place the combine procedure starts. In this
procedure, two different chromosomes with similar sub branches are taken common and a new tree is formed
consisting of both the chromosomes [13]. Combination techniques reduce the total number of gates required to
make the expression thereby optimizing the total circuit.

6) Mutation: In genetic algorithm, mutation is the procedure in which the worst fitness factor valued chromosome
within the population is replaced with a new randomly generated chromosome [13]. Mutation is mainly done to
restore the genetic factor or diversity that might have been lost from the iterated application of selection and
crossover. Mutation takes place with the probabilities Pm.

III. RELATED WORKS

Different works have been done for optimizing circuits based on AND/OR logic but reduction of majority gate
was not their main concern. Zhang [14] proposed an automatic synthesis of optimal QCA circuit using Boolean
algebra and that proposed technique reduced number of majority gates of three variable Boolean functions in
QCA. In 2007, Bonyadi [11] made attempt to optimize majority gate based design using genetic algorithm
considering single output circuit. In this method a chromosome is considered and presented in the form of tree
consisting of internal nodes i.e. majority gates, inverter gates and leaf nodes. Houshmand [12] took forward this
work and presented new technique to reduce number of gate count in the function having multiple output. Razieh
[13] showed the minimization of the gates for particular Boolean truth tables of an arbitrary number of outputs by
using genetic algorithm showing reduced delay of the considered implemented circuit.

IV. PROPOSED WORK

A. Multiplexer circuit representation in genetic algorithm

In QCA based genetic algorithm approach, a logical circuit is represented by using a tree which is called
chromosomes. Tree representation of a 2:1 multiplexer circuit and 4:1 multiplexer circuit is shown in Figure 3(a)
and Figure 3(b) respectively. For representing a 2:1 multiplexer tree, 6 internal nodes are required out of which 3
are majority gates and 3 are inverters and for representing a 4:1 multiplexer tree, 18 internal nodes are required
out of which 9 are majority gates and 9 are inverters.

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 139

(a)

(b)

Figure 3. Tree Representation of (a) 2:1 multiplexer (b) 4:1 multiplexer

B. Optimization of 4:1 multiplexer using 2:1 multiplexer by applying genetic algorithm

In genetic algorithm, logical circuit tree optimization is done by applying various steps of genetic algorithm like
initial population, selection, mutation, cross over and combine. Optimization of 4:1 multiplexer is done using the
logic of multiple output circuit. Here, two 2:1 multiplexer chromosomes of out-1 and out-2 shown in (2) and (3)
having least fitness function value are taken and representation of this chromosomes are given by tree structure
shown in Figure 4(a). Then the crossover stage starts to operate which actually selects the nodes which is likely
to get crossed over between two trees based upon the crossover probability Pc. The nodes which will be crossed
over are shown in Figure 4(b). Figure 4(c) represents the tree after crossover stage is complete. Then the final
combination operation begins. The common parts which actually represents the identical properties between two
trees are selected and combination in done to optimize the logical circuit as shown in Figure 4(d). At the end,
another 2:1 multiplexer tree is put above the combined trees and another intra combination is performed between
two inverter gates. Then the final optimized 4:1 multiplexer tree is created using three 2:1 multiplexer trees by
applying genetic algorithm as shown in Figure 3(e).

out െ 1 ൌ MሺMሺI2, S0’, 0ሻ, MሺI3, S0,0ሻ,1ሻ (2)

out െ 2 ൌ MሺMሺI0, S0’, 0ሻ, MሺI1, S0,0ሻ,1ሻ (3)

(a)

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 140

(b)

(c)

(d)

(e)

Figure 4. Tree representation (a) before crossover of two 2:1 multiplexer (b) at the time of crossover (c) after crossover (d) after combination
(e) GA optimized 4:1 multiplexer

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 141

C. Genetic Algorithm of Optimized 4:1 Multiplexer

Genetic algorithm optimizes the total number of gates in a QCA logic circuit with a single output. Here, firstly,
optimization of the lower level two 2:1 multiplexer is done by applying the genetic algorithm and then
implementation of the algorithm in the upper level 2:1 multiplexer is done by applying the same algorithm. Then
finally the optimized circuit of the 4:1 multiplexer is produced. This algorithm is an inductive approach i.e. the
present output x is obtained noticing the output of the previous state output x-1. The algorithm is run until getting
an expression synthesizing all of them. Crossover and mutation is done as explained earlier to get the best
expression following the rule of fitness factor depicted in subsection IV-D.

The algorithm is executed for a large number of generations to get some of the chromosome with fitness factor
having minimum value. These chromosomes are known as correct chromosome and is stored an array. The first
loop o, denotes the total Number of Outputs. The second loop i, denotes the total Number of Generations of the
genetic algorithm. Initial population is done here. The third loop j, denotes the Number of Chromosomes in
Current Generation. The fourth loop, k, denotes the total Number of Cuts. The two randomly generated numbers
M and N works as cutoff point for out-1[j] and out-2[o-1,i]. In this method, the out-1[j] obtains a common subtree
with out-2[o-1,i] without changing its logic. In combined method, the common nodes of the subtree of the two
chromosomes out-1[j] and out-2[o-1,i] are combined to get a common node part hence reducing or optimizing the
complexity of the circuit. After combining, the fitness function value is calculated using (5) or (6) depicted in
subsection IV-D and combined chromosome gate count is made using (4). Gates which become common are
subtracted from the total number of gates of the two chromosomes. Then selection process is done. Crossover and
mutation are done with their respective probabilities Pc and Pm in order to produce the next generations. The whole
operation is run for number of generations to get the best chromosome in correct chromosomes. The pseudo code
to demonstrate genetic algorithm is given in details in Pseudo code: 1 below.

Gates ሺCombined Chromosomeሾjሿሻ ൌ ሺGatesሺout െ 2ሾo െ 1, iሿ ሻ ൅ Gates ሺout െ
1ሾjሿ ሻሻ– Number of Common Gates (4)

Pseudo code of genetic algorithm

Pseudo code 1: Genetic algorithm

1. Start
2. Save all the chromosomes having minimum fitness value in correct chromosome.

 for o2 to Number of Outputs do
 for i1 to Number of Generation do
 for j1 to Number of Chromosomes in Current Generation do
 for k1 to Number of Cuts do

Create a random generated number named M between 0 and
Gates (out-1[j]).
Create a random generated number named N between 0 and
Gates (out-2[o-1,i]).
Replace the Mth node and its subtree in out-1[j] with the Nth node
and its subtree in the out-2[o-1,i].

 Combined Chromosome (j) = Combine (out-2[o-1,i], out-1[j]).
 end for
 Calculate fitness factor on the basis of number of nodes and levels in each
chromosomes of
 Combined Chromosome.

Gates (Combined Chromosome[j]) = Gates (out-2[o-1,i]) + Gates (out-1[j]) –
Number of Common Gates.
Make selection, crossover with probability value Pc, and mutation with probability
value Pm for out-1.

 end for
 Save the chromosomes in Combined Chromosome having minimum fitness value in correct
 chromosome.

end for
Return the best obtained chromosome in correct chromosomes[o].
end for

3. RETURN : Optimized Chromosome
4. Termination:
5. End

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 142

D. Fitness Function Calculation

The fitness function has two goals. The first goal is synthesizing a QCA logic circuit corresponding to the output
function. To achieve that, fitness function assigns better fitness value to a chromosome, which is closer to the
expected result. A fitness value of 0.50 (fitness = “0.50”) indicates the chromosome output vector equals the
expected result. A fitness value of 0.75 (fitness = “0.75”) indicates the chromosome output vector differs from the
expected result. The second goal of fitness function is to synthesis the optimal circuit. The fitness function tries
to optimize the number of the gates and levels of the circuit. A dynamic fitness table is maintained in the process
of fitness calculation. All the fitness factor value of the chromosomes are stored in the fitness table and if the same
chromosome is used again, its fitness value is retrieved from the fitness table reducing complexity and
computation cost. The fitness of smaller value is considered to be a better solution than the fitness with larger
value. The chromosomes are generated randomly and checked if it behaves as the expected results. The majority
(maj), inverter (inv), common majority (com maj), common inverter (com inv), levels are required to find the
fitness factor of a chromosome. The number of gate is counted as the sum of the majority gate, common majority
gate with the one-third of the sum of inverter gate and common inverter gate. The equation to find the fitness
value of a chromosome is given in (5), (6). If the chromosome output vector equals the expected result, then (5)
is used to calculate the fitness factor otherwise (6) is used to calculate the fitness factor. The pseudo code of fitness
function is given in Pseudo code: 2 below.

Fitness value ൌ 0.50 െ ൭ቆ
ଵ

୫ୟ୨୭୰୧୲୷ାୡ୭୫୫୭୬ ୫ୟ୨୭୰୧୲୷ାቀ
౟౤౬౛౨౪౛౨శ ౙ౥ౣౣ౥౤ ౟౤౬౛౨౪౛౨

య ቁ
ቇ ൅ ቀ

ଵ

୪ୣ୴ୣ୪
ቁ൱ (5)

 Fitness value ൌ 0.75 െ ൭ቆ
ଵ

୫ୟ୨୭୰୧୲୷ାୡ୭୫୫୭୬ ୫ୟ୨୭୰୧୲୷ାቀ
౟౤౬౛౨౪౛౨శ ౙ౥ౣౣ౥౤ ౟౤౬౛౨౪౛౨

య ቁ
ቇ ൅ ቀ

ଵ

୪ୣ୴ୣ୪
ቁ൱ (6)

Pseudo code 2: Fitness function

1. Start
2. INPUT: Initialization of chromosomes
 if chromosome fitness_value is present in fitness_table then

 fitness_value= fitness_table(chromosome);
 else

 majority  total number of majority gates in the chromosomes
 inverter  total number of inverter gates in the chromosomes
 common_majority  total number of common majority gates in the chromosomes
 common_inverter  total number of common inverter gates in the chromosomes
 level  total number of layers in the chromosomes

3. Generate output vector of the chromosome
 if (output vector == expected result) then
 fitness_value = 0.50 - ((1/ (majority + common_majority + ((inverter + common_inverter)
 /3))) + (1/level))
 fitness_table(chromosome)  fitness_value
 else
 fitness_value = 0.75 - ((1/ (majority + common_majority + ((inverter + common_inverter)
 /3))) + (1/level))
 fitness_table(chromosome)  fitness_value
 end if

4. Optimize the circuit by crossover
5. Combine
6. Calculate fitness_value (Repeat Step 2 -5)
7. Iteration:

end if
RETURN: fitness_value

8. Termination:
9. End

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 143

V. EXPERIMENTAL RESULT AND ANALYSIS

A. QCA implementations

The genetic algorithm based optimized 4:1 multiplexer tree by using three 2:1 multiplexer trees evaluated in
subsection IV-B and represented by Figure 4(e) is simulated using QCA designer version 2.0.3. In Figure 5(a),
layout of optimized 4:1 QCA based multiplexer circuit is created by implementing genetic algorithm. Simulation
result of signal diagram of optimized QCA 4:1 multiplexer circuit is shown in Figure 5(b).

(a)

(b)

Figure 5. 4:1 Multiplexer (GA optimized) (a) QCA layout (b) Signal diagram

B. Evaluation and comparative analysis of fitness factor value

The fitness factor evaluation and comparison between the proposed algorithm for fitness function by using (5),
(6) and the existing algorithm in [15] for fitness function is shown in TABLE I. After being implemented by using
Matlab, it is graphically plotted and compared as shown in Figure 6. Fitness function of smaller value is considered
to be a better solution than the fitness function with larger value. So from the graph it can be seen that the proposed
algorithm gives better solution than [15] in terms of fitness factor. 15 chromosomes are randomly taken among

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 144

which two chromosome of smallest fitness values are considered for performing further operations (crossover,
recombination, mutation) for forming 4:1 multiplexer and fitness value at each stage is calculated and stored in
table. If the output vector and the expected results become equal, then required 4:1 multiplexer logic circuit is
generated but the objective is to optimize the circuit so the 4:1 multiplexer having least fitness value is considered
as the required optimized circuit.

TABLE I. ANALYSIS OF FITNESS FUNCTION COMPARISON (*MAJORITY GATE, #COMMON MAJORITY GATE,
$INVERTER, %COMMON INVERTER, &LEVEL)

Chromosome * # $ % &

Fitness Factor Output Vector
=
Expected
Result

Propos
ed

In
[15]

M(M(M(I0,I1,I3),I3,1)',M(M(1,I2,I1’),I1’,I2),I1) 5 0 3 0 5 0.38 0.67 NO

M(M(I0,I1,1)’,M(I1,I2,1),I0)’ 3 0 2 0 5 0.28 0.60 NO

M(M(I0,I1,1)’,0,M(I1,I0’,I2))’ 3 0 4 0 5 0.31 0.65 NO

M(M(M(I1,I0’,I2),I1,M(I0,I1,1)’),M(I0,I1,1)’,0)’ 4 0 3 1 6 0.39 0.70 NO

M(M(M(I1,I0’,I2),I2’,1)’,I2’,M(I1,I0’,I2)) 4 0 5 0 6 0.40 0.72 NO

M(M(M(I1,I0’,I3),I0,I3’),I3’,1)’ 3 0 2 1 5 0.33 0.63 NO

M(M(M(M(S0,I2,0),S0,S0’),S0,I1’),S0,0) 4 0 4 0 6 0.39 0.70 NO

M(M(M(I1,I2,1)’,I1,I3’),I1,M(I2’,I3,0)) 4 0 4 0 5 0.36 0.67 NO

M(M(M(I0,I1’,0),I0,M(I1,I2,0),1,M(I0,0,M(I1’,I0,M(
I1,I2,0)))

5 1 5 0 6 0.45 0.74 NO

M(M(I1,I0’,0)’,M(I0,I1,1)’,I1)’ 3 0 5 0 6 0.36 0.70 NO

M(M(M(I0’,I1,I2),I2’,1)’,I0,M(I1,I0’,I2)) 4 0 4 0 6 0.39 0.70 NO

M(M(M(M(I1,I0’,I2),I2’,1)’,I2,I3),I0,I3’) 4 0 4 0 7 0.41 0.72 NO

M(M(M(I1,I0’,I2),I0,I2’),I2’,M(I1,I0’,I2)))’ 4 0 4 0 6 0.39 0.70 NO

M(M(I1,I0’,I2’),’,M(I0,I1’,0),M(I2,I1,0)) 4 0 6 0 5 0.38 0.70 NO

M(M(I0’,S0’,0),M(I1,S0,0),0) 3 0 5 0 4 0.28 0.62 NO

M(M(I2,S0’,0),M(I3,S0,0),1) 3 0 3 0 4 0.25 0.58 NO

M(M(I0,S0’,0),M(I1,S0,0),1) 3 0 3 0 4 0.25 0.58 NO

M(M(M(1,S0’,0),M(I1,S0,I2’),1),M(M(1,S0’,0),M(I
3,S0,I0’),1),1)

5 1 4 0 5 0.41 0.70 NO

M(M((M(M(I0,S0’,0),M(I0,S0,0),1)),S1’,0),M((M(
M(I2,S0’,0),M(I3,S0,0),1)),S1,0),1)

9 0 9 0 6 0.25 0.77 YES

M(M((M(M(1,S0’,0),M(I1,S0,I2’),1)),S1’0),M(0,(
M(M(1,S0’,0),M(I3,S0,I0’),1)),S1),1)

7 1 5 1 6 0.23 0.76 YES

Figure 6. Graphical comparison among fitness function

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 145

C. Comparative analysis of gate requirement

From the QCA simulation, a comparative analysis is done upon requirement of majority gate, inverter and total
gate. Comparative TABLE II shows that the normal QCA based 4:1 multiplexer design consumes more gate
requirement count than the proposed genetically optimized QCA based 4:1 multiplexer design.

TABLE II. COMPARISON TABLE OF 4:1 MULTIPLEXER USING GENETIC ALGORITHM AND NORMAL QCA

4:1 Multiplexer Required Majority
gates

Required
inverter

Common
gates

Total number of
gates

Normal QCA 9 9 0 9+9=18

Proposed (using GA) 8 6 1 8+7-1=14

D. Comparative analysis of cells, area, clock zone

From the QCA simulation result, a comparative analysis is done upon different parameters like cell requirement,
area, number of clock zones. Comparative TABLE III shows that the other recent QCA based 4:1 multiplexer
design consumes more cell, area and clock zones than the proposed method.

TABLE III. COMPARISON TABLE OF DIFFERENT 4:1 MULTIPLEXERS

Design Complexity (Cell Count) Area (μm2) Delay (Clock Zones)
[4] 271 0.39 19

[3] 215 0.25 6

[5] 155 0.24 5

[18] 251 0.20 5

[19] 124 0.25 8

[20] 107 0.15 4

Proposed 67 0.08 2.5

VI. CONCLUSION

This manuscript demonstrates a novel genetically optimized QCA based 4:1 multiplexer circuit. New calculation
of fitness function and genetic algorithm is proposed and is applied in this 4:1 multiplexer. Optimization of 4:1
multiplexer is done by reducing required number of majority gate and inverter and this optimization is done by
implementing new proposed fitness function and genetic algorithm. The proposed multiplexer architecture is
simulated by using QCA designer version 2.0.3. From the simulation results, it is proved that the proposed genetic
algorithm based QCA 4:1 multiplexer architecture provides an improved result in terms of complexity (cell count),
area (μm2) and delay (clock zone) when compared with other QCA 4:1 multiplexer architecture in [3, 4, 5, 18-
20].

REFERENCES
[1] M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse, “Nanotechnology: basic science and emerging technologies”, CRC

press, 2002.
[2] C. S. Lent, P. D. Tougah, W. Porod, G. H. Bernstein, “Quantum cellular automata”, Nanotechnology, vol.4, pp.49–57, 1993.
[3] V. A. Mardiris, I. G. Karafyllidis, “Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers”, Int.

J. Circ. Theor. Appl, vol.38, pp.771–785, 2010.
[4] R. S. Nadooshan, M Kianpour, “A novel QCA implementation of MUX-based universal shift register”, J. Comput Electron, vol.13,

pp.198–210, 2013.
[5] B. Sen, M. Goswami, S. Mazumdar, B. K. Sikdar, “Towards modular design of reliable quantum-dot cellular automata logic circuit using

multiplexers”, In Computers and Electrical Engineering, vol.45, pp.42–54, 2015.
[6] K. Kim, K. Wu, R. Karri, “The robust QCA adder designs using composable QCA building blocks”, IEEE Trans. Comp. Aid. Des. Integ.

Circ. Syst, vol.26, pp.176–183, 2007.
[7] S. Hashemi, M. R. Azghadi, A. Zakerolhosseini, “A novel QCA multiplexer design”, International Symposium on Telecommunications,

pp.692–696, 2008.
[8] A. Roohi, H. Khademolhosseini, S. Sayedsalehi, K. Navi, “A novel architecture for quantum-dot cellular automata multiplexer” IJCSI,

vol.8, issue.6, pp.55–60, 2011.
[9] C. S. Lent, P. D. Tougaw, “Lines of interacting quantum-dot cells-a binary wire”, Journal of applied physics, vol.74, 1993.
[10] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, “Digital logic gate using quantum-dot cellular automata”,

Science, vol.284, pp.289-291, 1999.
[11] M. R. Bonyadi, S. M. R. Azghadi, N. M. Rad, K. Navi and E. Afjei, “Logic optimization for majority gate-based nanoelectronic circuits

based on genetic algorithm”, International Conference on Electrical Engineering, ICEE, 2007.
[12] M. Houshmand, S. H. Khayat, R. Rezaei, “Genetic algorithm based logic optimization for multi-output majority gate-based nano-

electronic circuits”, IEEE, pp.84-88, 2009.
[13] R. Rezaee, M. Houshmand, M. Houshmand, “Multi-objective optimization of QCA circuits with multiple outputs using genetic

programming”, Genetic Programming and Evolvable Machines-Springer, vol.14, pp.95-118, 2013.
[14] R. Zhang, K. Walus, W. Wang, G. A. Jullien, “A method of majority logic reduction for quantum cellular automata”, IEEE Transactions

on Nanotechnology, vol.3, no.4, pp.443–450, 2004.

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 146

[15] M. H. Mahalat, M. Goswami, A. Mondal, B. Sen, “Synthesis and Optimization of multi-objective multi-output QCA circuit using genetic
algorithm”, In arXiv, pp.1-10, 2017.

[16] G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz, W. Porod, “Quantum dot cellular automata: line and
majority logic gate”, Japn. J. Appl. Physics, vol. 38, pp.7227-7229, 1999.

[17] P.D. Tougaw, C. S. Lent, “Logical devices implemented using quantum cellular automata”, J. Appl. Phys, American Institute of Physics,
vol.75, issue.3, pp.1818-1825, 1994.

[18] G. Cocorullo, P. Corsonello, F. Frustaci, S. Perri, “Design of efficient QCA multiplexers”, Int. J. Circ. Theor. Appl, vol.44, pp.602–615,
2016.

[19] M. Askari, M. Taghizadeh, K. Fardad, “Digital Design Using Quantum-Dot Cellular automata (A Nanotechnology Method)”,
Proceedings of the International Conference on Computer and Communication Engineering, pp.952-955, 2008.

[20] H. Rashidi, A. Rezai, S Soltany, “High-performance multiplexer architecture for quantum-dot cellular automata”, J. Comp. Electr,
vol.15, pp.968–981, 2016.

Som Banerjee et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 2 Mar-Apr 2020 147

	A Novel Optimized QCA 4:1 MultiplexerCircuit Using Genetic Algorithm
	Abstract
	Keywords
	I. INTRODUCTION
	II. BACKGROUND
	III. RELATED WORKS
	IV. PROPOSED WORK
	V. EXPERIMENTAL RESULT AND ANALYSIS
	VI. CONCLUSION
	REFERENCES

