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Abstract— The C11 memory model is a relaxed model that works on top of an architecture. This model 
has many intriguing properties which help in the efficiency of a program but these may also cause certain 
unexpected behaviors. Such behavior violations are a cause of annoyance to programmers. There exist 
some C11/C++11 model checking tools which analyze the given program and produce examples in the 
form of execution traces when such behavior violation may take place. In this paper, we discuss four such 
model checking tools and compare them on the basis of their performance on some example programs. 

Keywords- C11 Memory Model, Model Checking, Program Verification, Relaxed Memory 

I. INTRODUCTION 

The C11 relaxed memory model was a topic of great discussion among academics, since it came out with two 
new features on top of the pre-existing C model – atomic operations and memory fences. The novel relaxed 
nature of the C11 model tended to have certain properties, such as instruction re-orderings between threads and 
inter-thread instruction interleavings. A read instruction in concurrent or parallel programming may read a value 
of a variable form any of the previously set values. This relaxed model was introduced in order to increase 
efficiency and speed. 

However, this relaxed model also caused certain behaviors that proved to be unexpected for the programmers, 
such as an incorrect value of a variable being set. Such behaviors would be an impossibility in the sequential 
consistency model and hence were unexpected and undesirable. In such a case, the programmer may add a 
statement such as an “assertion” which can ensure the prevention of such behavior.  

A single run with the order of instructions is called an execution trace. This “assert” statement will be violated 
in some cases with instructions reordering and will be satisfied in others. A model checker will provide the 
programmer with counter examples of entire execution traces where the assertion will get violated. The 
programmer can then use these counter examples to obtain the scenarios which should thus be avoided. 

In this paper, six well-known multi-threaded algorithms have been used with varying number of threads to 
compare four model checking tools in the C11 relaxed memory model based on the time they take to figure out 
buggy execution traces. 

II. BACKGROUND 

A. A. Sequential Consistency and Relaxed Memory Models 

A program is said to have sequential consistency if the order and result of the concurrent program comes out 
as if operations of the execution were run in some sequential order. The order of each individual process appears 
in the sequence that was determined by the program.  

For instance, let’s take a look at Fig. 1. A sequentially consistent model would execute in only the following 
orders:  

 
Figure 1. Simple two-threaded program 

 

   Thread 1 
(1) A = 1 

(2) print(B) 

   Thread 2 
(3) B = 1 

(4) print(A) 

init A = 0, B = 0 
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1 -> 2 -> 3 -> 4   output: 01 

3 -> 4 -> 1 -> 2  output: 01 

1 -> 3 -> 2 -> 4  output: 11 

1 -> 3 -> 4 -> 2  output: 11 

In the above example, a sequentially consistent model would be able to print the values, “01” and “11” only. 
It would be impossible for it to print, say, “00.” 

On the other hand, even though these models would preserve the rules for being sequentially consistent, the 
program would become extremely slow since only one instruction would execute at a time. This is where relaxed 
memory models come in, where instruction A would not need to wait for instruction B to complete and both 
would run in parallel. Examples of relaxed memory models include Total Store Ordering (TSO), Processor 
Consistency (PC), Partial Store Ordering (PSO), Weak Ordering (WO), Release Consistency (RC). In these 
models, there is some allowance in operation reordering, such as read-write reordering etc. 

In the case of these relaxed memory models, it may become a possibility to get an output of “00” when two or 
more threads concurrently access the same memory location. For example, if R1 and R2 both read the init values 
of y and x instead of the updated values in instructions (1) and (3), then the output would be printed as “00”. 

This would be inconsistent with the sequential model and hence this behavior would not be expected by the 
programmer. 

 
Figure 2. Simple two-threaded program with “assert” statement 

To prevent such behavior while running relaxed consistency, the programmer might add an “assert” statement 
(Fig. 2), ensuring that such unexpected behavior does not take place in the program. 

B. Backgound on C11 

In 2011, a new ISO standard for C/C++ was sanctioned which included some new features and additions to 
the pre-existing C model. This was informally known as C11 or C++11. This new standard defines the memory 
model for C/C++, which describes the behavior and interaction of threads in a concurrent program through shared 
data.  

The memory model introduced in the new standard basically introduces two new portable ways for memory 
access synchronization in concurrent or multi-threaded programming, namely atomic operations and fences.  

Atomic operations consist of a load operation and a store operation. These atomic operations can be executed 
to or from a particular memory location without causing data races or undefined behavior There are also modes to 
these operations, which are relaxed, release, acquire, consume, acquire-release and sequential consistency. These 
have different degrees of strength and weakness, depending upon how relaxed the mode is. The order of these 
models are described in Fig. 3. 

 
Figure 3. Memory orders in increasing order of strength 

Fences introduced in C11 allow memory operations to be ordered or reordered between threads [1]. A fence, 
on the other hand, can either be a sequential fence, a release fence or an acquire fence. There are synchronizations 
among these fences which ensure synchronization between instructions. ensuring that such unexpected behavior 
does not take place in the program. 

C. Model Checking 

Model checking is a verification method for finite state concurrent systems, first developed in the 1980s. It 
exhaustively searches the state space of the design with certain specifications. These specifications may be 
written in propositional logic or temporal logic.  

There are many properties of model checking that programmers can take advantage of. It is a fast process with 
no proofs involved. A programmer will also receive a counter example of a certain execution, describing the 
order and trace of each instruction and their metadata. Many concurrency properties can be expressed with the 
model checking logic. A major disadvantage is that there might be a state explosion problem, with too many 

assert(A != 0 and B != 0) 

   Thread 2 
(3) B = 1 

(4) print(A) 

   Thread 1 
(1) A = 1 

(2) print(B) 

init A = 0, B = 0 

non-atomic < relaxed < release = acquire < sequential consistency 
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processes and data paths being explored. A lot of progress has been made on this problem. Some of these 
solutions include binary decision diagrams, partial order reduction, abstraction, compositional reasoning, 
symmetry, cone of influence reduction, semantic minimization.  

The performance of model checkers today has drastically improved, with model checking tools being able to 
routinely handle systems with a hundred to three hundred state variables. Even systems with an essentially 
infinite number of states can be checked by using appropriate techniques.  

This paper talks about stateless model checking. Stateless model checking entails testing concurrent programs 
explosively by verifying and exploring all possible scenarios and thread interleavings. This is as opposed to a 
variation such as bounded model checking which unrolls the finite state machine for only a fixed number of steps 
and keeps checking for a certain condition to be met. The motivation behind stateless model checking was that 
programmers and developers often need unit tests to test their code or part of their code to figure out what 
behavior the underlying memory model allows. Stateless model checkers explore the state space of a program’s 
possible behaviors with different combinations of thread interleavings in the program. Such an exhaustive search 
of a program does result in computational intractability and programs may even grow to any unreasonable 
lengths. This issue is solved by many methods such as Partial-Order Reduction (POR) mechanisms 

III. LITERATURE REVIEW 

C11 has been accused of supporting “racy” memory accesses [2] within different levels of consistency. This 
2017 paper discusses some of the innate flaws in the C11 memory model and proposes a repaired version, namely 
RC11 (for Repaired C11). This proposed model is a repaired version of C11 which gets rid of the notion of 
dependency cycles.  

A concurrent program’s semantics depend upon the underlying architecture and the memory model of the 
system. This property has generated a lot of interest among academia.  

Reference [10] presents a framework for applications of Stateless Model Checking of programs running in the 
POWER architecture. Reference [11] implements model checking in a range of different memory models which 
include SC, Intel x86 and IBM Power. On the other hand, [12] and [13] conduct testing and verification for weak 
memory models. 

Pioneers in computer science provided verification tools and formal proof methods which are helpful in 
verification and checking for program correctness. However, these techniques were hardly used in practice until 
model checking tools were introduced [8]. Reference [9] discusses bounded model checking as with state 
equivalence under two memory models with Dartagnan and Porthos and compares it to other model checking 
tools. It also discusses factors such as user interface, reachability and inclusion.  

Model checking is an industrial-level verification technique. It has applications in integrated circuit design 
[15], where the algorithm for model checking can conduct circuit verification with a huge number of states. 
Another application includes the analysis of biochemical networks [5]. Database backend web applications also 
use model checking [16] to interpose in the middle of the program layer and backend layer and track the effects of 
the queries made to the database. Other applications of model checking include situations with natural description 
for concurrent and reactive systems such as automobiles and aero-space control systems, nuclear control systems, 
network management systems etc. 

IV. MODEL CHECKERS 

A. CDS Checker 

CDS Checker [4] was proposed in 2013. It is a stateless model checking tool for C/C++ code. This tool 
exhaustively unit tests several relaxed behaviors of the given concurrent code in the C/C++ memory model. Made 
in University of California, Irvine, the authors have developed novel techniques and methods for this extensive 
exhaustive search and also to minimize the number of execution behaviors that need to be explored. 

CDS Checker provides counter examples and the complete execution trace for each example. The issue of 
explosive search space is solved by using a class of optimization techniques called dynamic partial-order 
reduction (DPOR) in CDS Checker. 

A limitation of CDS Checker comes in unbounded loops. Exploring while loops is not a possibility for this 
tool. If a user needs to test a program containing a while loop, it would first have to be converted to a for loop 
with limited iterations. CDS Checker also fails to provide the user with the line number from the source code of 
the execution trace since the tool works on the generated binary object file of the code, as opposed to using the 
main source code. 

CDS Checker was one of the first model checkers for the C11 model and it was the basis for many of the new 
and other model checkers explored in this paper. One difference between this and the others is that CDS Checker 
uses C++ files converted into binary object files which are then tested and explored. 
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B. RCMC 

RCMC [6] is a stateless model checking tool which came out in 2018. It verifies concurrency under the 
repaired version of C11, RC11. This tool states that it works directly on execution graphs, as compared to other 
earlier methods where threads enumerate interleavings up to some partial order reduction improvements, like the 
way used by CDS Checker.  

The advantage to this is that it avoids redundant exploration. This tool constructs execution graphs by marking 
the nodes revisitable, such as revisiting multiple reads or writes. They have also created a mechanism to rule out 
incoherent executions. The authors claim that using this approach makes RCMC significantly faster, making it 
more efficient than other model checking tools. Another feature is that it is also more resilient to small changes in 
the benchmarks.  

A limitation to RCMC is that the provided output stops when it finds the first violation, as opposed to CDS 
Checker which provides all the possible violations. RCMC also fails to provide certain important properties of the 
instructions in the output, such as the read-from (rf) value. It does, however, give the line number from the 
original source code, which CDS Checker failed to provide. 

The paper finds out that model checking under weak memory constraints is much more easily done than doing 
the same for sequential consistency. This was in contrast to thread-interleaving method which creates difficulties 
in model checking with weak memory effects. The evaluation of this tool shows that other tools consider a 
number of infeasible executions, thus increasing the runtime, whereas RCMC manages to outperform the others 
in most of the cases. 

C. GenMC 

A model checker for weakly consistent libraries is GenMC [7]. This tool claims to be optimal and parametric 
in choosing and using the memory models and it also can verify concurrent library clients. This tool does not 
explore inconsistent execution paths and explores each program execution according to the model exactly once.  

Reference [7] talks about tackling multiple challenges and discusses their solutions. The first challenge is 
related to the memory model that the program has to follow, since the model gives the outcome of the program. 
They implement their tool in multiple memory models such as SC, TSO, PSO, RC11. Problems arise since some 
assertions hold under the SC model and the TSO model but not under PSO or RC11 because of differences in 
handling instructions among the models. They solve this in their extensive algorithm, which works under any 
memory model and satisfies the four basic assumptions - acyclicity, extensibility, prefix-closedness, well-
blocking. 

GenMC is the most parametric tool when it comes to memory models out of all the tools discussed, since it 
can be used for models other than traditional memory models, such as those including high-level libraries like 
those that include mutex locks as primitive operations. They solve the problem of numerous trivial execution 
graphs through the partial order reduction method.  

A drawback to GenMC is that just like RCMC, it stops at the first buggy execution trace it finds. Apart from 
that, GenMC is a fast and reliable tool for C11 model checking. 

D. Tracer 

Tracer [14] is based on symbolic execution. It works mainly for the safety properties of sequential C 
programs. Tracer basically builds an execution tree which over approximates the arrangement of all solid 
reachable states. The symbolic path tries to reach the error and in case it cannot reach it, the program is reported 
as “safe”. Otherwise, the program is said to contain a bug or is non-terminating.  

The idea of symbolic execution is that there are multiple executions based on which inputs cause the program 
to run in what kind of way. This may not be very apparent in simple programs, but multi-threaded programs with 
multiple ways of thread interleavings along with if-else branch statements and loops can procure a myriad of 
different outputs and execution traces. Symbolic execution actually has many benefits, which are mentioned as 
part of why it was chosen for Tracer. These include not exploring infeasible paths and avoiding expensive 
refinements, recovery from overly specific abstractions. However, there are some challenges involved as well. As 
it turns out, there are an exponential number of paths and in case of unbounded loops, an infinites number of 
paths. 

Tracer creates trees of the symbolic execution traces of the given input program. If and when the symbolic 
execution reaches the error node, it reports the error. If the error is real then it aborts and in case of spurious 
errors, it refines it. In case of no error, it continues the symbolic execution normally. After the symbolic 
execution, if all of Tracer’s assertions are violated then the program is reported as safe. If it is unsafe, then a 
counter example is shown as output. 
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V. METHODOLOGY AND ARCHITECTURE 

Experiments for this paper were conducted using four of the aforementioned model checking tools, namely 
CDS Checker, Tracer, GenMC and RCMC. These tools were chosen since they work in the C11/C++11 memory 
model, as opposed to general relaxed memory models implemented in other tools such as Nidhugg [3]. 

Each tool has varying input formats and file types - CDS Checker has a C++ file input with a .cc file 
extension. It first converts this into a binary object file using its makefile, which is then given as input to the tool. 
Tracer takes a C++ file input with extension .cpp which it turns into an executable file before giving it as input to 
the tool. GenMC takes a C file input which is distributed between two files - a file with thread functions and a 
main file. RCMC input works the same as GenMC with a distributed C file. 

Each tool also has its own different libraries, defining functions such as thread functions, assertion statements 
etc. In some cases, even the main function is specially defined by the tool and the default main function is not 
used. For example, CDS Checker defines its own main function as “user_main” so it is easier for the tool to 
conduct its own tests. 

The examples used are common algorithms in concurrency and most were easily found in the examples and 
benchmarks of the tools. There were cases where some examples were not present in one or two of the tools, in 
which case the program was re-written according to the particular tool’s format and then executed. 

For each tool, the time was an important measure. The tools GenMC and RCMC had built-in functions and 
provided the time taken for execution in their respective outputs. On the other hand, both CDS Checker and 
Tracer did not provide the execution time in their outputs. Therefore, a script was written for each in python, 
measuring the time taken to receive the output and also to count the relevant lines of code. 

Another measure to be taken into consideration was the lines of code for each tool and each program. The 
lines of code were measured as separate instructions divided by lines, excluding empty lines - just new-line 
characters, or just brackets. In the case of GenMC and RCMC where the input file is distributed, lines of code 
from both files are taken into consideration and added. 

The programs lamport, casw and n_reads_m_writes are actually algorithmic programs in which the number of 
child threads created can be varied in order to obtain varying outputs. Hence multiple values for each were tested 
and the number of threads used for each is mentioned inside the brackets. 

 
Figure 4. Architecture of the proposed system 
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TABLE I.  Results of the performance of the four model checking tools 

all time is in seconds 

LOC: Lines of code  BTE: Buggy Traces Explored  TCEE: Total Complete 
Executions Explored 

Architecture of the proposed model is described in Fig. 4. The C/C++ source file with the required assertions 
is provided as input to the python script, which then runs the code on the model checker. The script times the tool 
and extracts information such as the total number of explored executions, the number of buggy executions 
explored etc and gives the results as an output to the user. 

VI. RESULTS 

Using these tools, the major deduction that can be made is that CDS Checker and Tracer match in many 
aspects and are similar to each other, whereas GenMC and RCMC are similar to each other. Both CDS Checker 
and Tracer work on C++ files and convert them into executables before providing it to the tool. On the other 
hand, GenMC and RCMC have distributed C files with thread and main functions in different files. 

The example file, casw is a special file, containing RMW (read-modify-write) function. The RMW function is 
not supported by all tools, for instance Nidhugg does not support such a function. The szymanski algorithm is 
also unsupported by Tracer and CDS Checker, hence producing a non-terminating output with infinite counter 
examples of buggy executions. This is because of the unbounded loop present in the program. 

Input 
file 

(with 
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threads) 

CDS Checker Tracer GenMC RCMC 

LO
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Time 
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szyman
ski (2) 
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90
4 

201 0.06 53 0 384 0.09 
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(3) 

40 0 23 0.007 19 0 30 0.005 21 0 24 0.03 21 0 66 0.03 
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(4) 
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n_write
rs 

m_read
ers 

(15,3) 

27 0 
496
5 

1.16 23 0 
409
6 

0.7 27 0 83521 9.17 24 0 
105
439 

24.3 

n_write
rs 

m_read
ers 

(20,3) 

27 0 
107
15 

3.34 23 0 
926
1 

2.15 27 0 
23425

6 
44.0

3 
24 0 

582
467 

92.6 

ISSN : 2319-7323 Ishita Jaju et al. / International Journal of Computer Science Engineering (IJCSE)

DOI : 10.21817/ijcsenet/2020/v9i3/200903013 Vol. 9 No. 3 May-Jun 2020 185



RCMC

GenMC

Tracer

CDS
Checker

 
Figure 5. Performance of the tools on different programs based on time taken by each 

Fig. 5. compares the performance of the four tools based on only the time factor. We notice that the tools 
cannot be compared based on certain factors such as “number of total execution traces” or “number of buggy 
execution traces,” since the tools do not behave in the same way. Tool CDS Checker provides all possible 
execution traces, while RCMC stops at the first buggy trace found. 

VII. CONCLUSION AND FUTURE SCOPE 

The most comprehensive model checking tool for programs in the C11 concurrency model is CDS Checker. It 
provides the programmer with all the possible execution traces, giving the number of infeasible as well as 
possible buggy execution traces. The output contains all the counter examples as well as their metadata such as 
reads-from values, memory order etc. It also is fast and efficient, with the only seeming drawback being that 
unbounded loops are not handled in it. There are many applications for this type of comprehensive tool.  

A tool like RCMC or GenMC, which stops the output at the first found buggy execution has other 
applications. However, these tools fail to provide certain required information about execution traces and their 
metadata. This in turn might result in lack of information and can be unusable in some cases. 

C2x is the latest standard revision in the C memory model. Model checkers are already being made for the 
C20 model. It adds one new principle to the principles of C, relating to API documentation and arrays. 
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