
Performance Evaluation of Basic Image
Processing Algorithms in CPU, GPU,

Raspberry Pi and FPGA
TAHAR ABBES Mounir¹, Selma Boumerdassi², Abdelhak Benhamada¹,

Abdelmadjid Mhamed Allal¹, Mohamed Kherarba¹
1 Hassiba Ben Bouali University, Computer Science Department, LME Chlef, Algeria

mtaharabbes@yahoo.fr
2 Selma Boumerdassi, CNAM/CEDRIC, Paris, France.

Abstract— This article presents a comparative and experimental study (benchmark) regarding the main
execution time on diverse platforms (CPU, Graphics Processing Units (GPU), Raspberry, and The Field-
Programmable Gate Arrays (FPGA)). We evaluate the time performance of standard image processing
algorithms used in many vision applications. To carry out this experiment, we designed a mobile explorer
robot equipped with an integrated CMOS camera. This robot has been programmed to perform a route
avoiding obstacles using five image processing algorithms (re-size, erode, dilate, find contours, and distance
calculation). Two levels of tests were carried out: The internal level check the efficiency of the application
algorithms, and the external level measures the platform's output concerning execution time. Our results
highlight the following remarks: GPU is advantageous in image processing algorithms, which process data
or pixels independently. The CPU shows its power on sequential data; however, GPU is slower than CPU
in those algorithms. The FPGA card's performance is ten times higher than CPU and GPU; it is possible
to increase performance by processing in parallel.

Keywords - Image Processing; FPGA; CPU; GPU; Raspberry Pi. (key words)

I. INTRODUCTION (HEADING 1)

Evaluating the performance of a system is essential to know under what conditions it can withstand and continue
to operate without failures or faults within a determined period. This has been a topic of interest in science
computer engineering for nearly half a century. Let us illustrate the problem with a simple example; if we want to
implement an industrial real-time machine control system, several choices of the execution platform are available
(CPU, GPU, STM32, PIC, ATMEGA ...). So we must have a prior idea on the performance of these platforms in
terms of execution time, memory, and energy consumption, to be able to make an optimal decision. Our work will
help engineers and technicians to make optimal choices depending on the application context, for this we have
chosen to implement five standard algorithms for image processing in different platforms. The chosen application
falls within the field of robotics, it consists of building an autonomous robot which traverses a terrain with
obstacles without human intervention.

Improving the degree of autonomy of robotic systems is of interest to researchers and manufacturers. In this
system, robots are designed to work without human intervention in often hostile environments and long periods.
To reduce power consumption and CPU time, the robot tasks performed using algorithms with low complexity.
One of the most used applications for robots is the autonomous navigation system. Autonomous navigation systems
are used in applications such as service, monitoring, or exploration robots in which the robot simultaneously moves
and perform the main task. Mobility is one of the main aspects of these robots as it is the basis on which one can
combine many subsystems with different functionalities. However, motion system performance has a significant
effect on task performance.

Related problems occur in applications that could have fatal consequences (e.g., robots carrying dangerous
material). Mobility depends on the environmental parameters, which include sound and image. Image segmentation
is the most useful image processing system process. The segmentation interest is to decompose an image into
several homogeneous regions, in the sense of a criterion that is a priori set. Having homogeneous regions can offer
more data that simplifies the task. Segmentation techniques are based on the variation of pixel values (edge
detection) or detection of homogeneous areas in the image (extraction of regions). Region segmentation approaches
work by partitioning the image into a set of regions. Mobile elements (robots) faced several problems that could be
solved using different techniques. The problem of obstacle avoidance is one of the significant issues in mobile
robotics.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 312

A classic problem in this domain is to make avoidance of obstacles and the planning of trajectories for
autonomous mobile robots. It defined as follows: if we know the first place of the mobile node in a known or
unknown environment, that can surely contain static or dynamic obstacles, and if we have collected all the required
pieces of information about the characteristics of this environment by the sensor system (camera) of the robot, how
we can try if we want to move this mobile robot to a new position? In our case, we only deal with dynamic obstacles
by assuming that information from the robot’s environment where gathered from a camera and processed using
image processing methods in a processing environment. This paper analyzes each device’s trends in execution time
performance. It compares their sustained performance sets of scientific applications seeking to find the right
platform for a specific application. Recent literature, comparing Graphics Processing Units and CPU are usually
restricted to a special set of applications in a particular domain, or only compare two of those platforms. On the
other hand, FPGA (Field-Programmable Gate Arrays) has illustrated great performance in image processing
applications. However, recent CPU and GPU also have a potential for high performance for those problems. We
have to choose a domain that calls algorithms using all the resources available on the platform. We opted for image
processing, and the subject that affects several and very complex algorithms is the avoidance moving obstacle. We
aim to develop a dynamic algorithm for avoiding obstacles based on image processing techniques in different
platforms (CPU, GPU, Raspberry, and FPGA).

The following steps are used in Algorithm:

1. Capturing the image

2. Detecting and identifying obstacles.

3. Distance measurement between camera and obstacles.

4. Decide for avoidance.

5. Then test the Algorithm into various platforms: CPU, GPU, Raspberry, and FPGA.

The document is structured as follows: Section two is dedicated to literature survey. Section three is devoted to
the formulation problem and the proposed method, while Sections 5 presents evaluation performances and results.
Section 6 concludes the study.

II. RELATED WORKS

This section focuses on the classification and discusses related studies into four parts (CPU, GPU, Raspberry
Pi, and FPGA). The literature is reviewed to examine available methods that could be used to evaluate the time
consumed, and study the efficiency of FPGA, CPU, and GPU with different configurations. These have been
important topics of study in the literature for many years because of the constant evolution of those platforms. A
number of studies have examined the impact of the hardware on the chosen solution.

 The first study [1] investigated offloading of the processing part of a latency educational game to a low-cost
Raspberry and GPU. The work [2] proposes a theoretical algorithm for a characterization of operations performance
in an important class of applications on GPUs and Intel CPU, and GPUs from AMD and NVIDIA. Authors in [2]
show that GPUs are faster and more energy-efficient than a CPU or Xeon Phi processor.

Conceptually similar work has also been carried out by [3] in which, they analyzed and focus on the specific
application associating moving area separation, over images that initiated in big multimedia operations. They offer
a novel Histogram-based Moving Object Segmentation algorithm that implements a pixel-oriented approach. It’s
providing higher performance on both quality and efficiency. Another important constraint on all the work
discussed is:

• Studying how fragmentation techniques can be integrated to improve the effectiveness of this framework.

A concept has been presented in [4] to discover the possibility of implementing game theory decision making
to get a win-win between autonomous vehicles. The results validate that the proposed accelerator and tests the
performance by implementing the design on a Xilinx KCU116 board. The accelerator’s initial speed-up is 2.4x
versus performance on a CPU. Along with the same context, a technique has been proposed for designing
applications for real-time image processing [5]. The authors Use the ITER CODAC Core System (CCS) software
tools and the hardware configuration specified in the ITER Hardware Catalog of Fast Controllers, Camera Link
FPGA-based frame-grabbers, and NVIDIA GPUs. This interface support provides complete control of camera
configuration parameters, delivery of image processing functions between the FPGA and the GPU, and efficient
data transfer between the various architectural components. Consequently, the GPU showed better performance
than the CPU.

Likewise, [6] proposed that the GPU application is laughable, as they cannot perform the calculations with
sufficient speed. The authors illustrate that FPGAs and GPUs are commonly used in computer vision applications
and image processing between hardware accelerators. A detailed comparison of the FPGAs and GPU performance
was thus given.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 313

An easily reproducible benchmarking method was evaluated in [7] that use only publicly available vision
libraries: OpenCV, NVidia Vision Works, and if OpenCV unique platform-specific code. The results show that the
GPU achieves an energy/frame reduction ratio of 125 1.1{3.2 versus CPU and FPGA for simple kernels. However,
the FPGA outperforms others with energy/frame reduction ratios. It is also observed that as the complexity of a
vision kernel increases, the FPGA performs progressively better.

More recently, the author’s work in [8] seeks to help a developer or company understand the trade-offs in using
heterogeneous computing systems provided by cloud computing providers to deploy high-performance computing
applications. Knowing the cost/performance and scalability of implementation at CPUs, FPGA, and GPUs are
essential. To reduce costs, one may choose the right deployment strategy. The authors show that FPGAs can provide
substantial speed-up compared to a GPU on the performance-critical kernels.

Along these, research supporting multiple encryption algorithms for password recovery based on hybrid CPU-
FPGA systems that can benefit from both the versatility of the CPU and the energy efficiency of the FPGA [9]. The
proposed hardware accelerator architecture is found to be 12.5 and 3.1 times more 140 power effective than the
TrueCrypt and WPA-2, respectively, pure FPGA-based password recovery accelerators.

The contributions in [10] can be summed up as follows: Firstly, a heterogeneous architecture of computing
systems is built, consisting of computing nodes with a local queue. It proposes the parallel application job model
based on the execution size of the CPU and GPU. Secondly, a model for using a system computing node CPU GPU
is specified. It analyzes the relationship between computing node power consumption and CPU-GPU utilization,
and a deduction of job execution energy consumption and optimal CPU-GPU utilization.

The research study in [11] examines the extent to which GPU has been used for the processing of radar signals and
radar data. Several studies have used GPU for GPU implementation of radar signal and data processing algorithms
compared to the usual Central Processing Unit (CPU). The result of the comparison shows that the performance of
the GPU is much better than the CPU.

III. ARCHITECTURE OF THE PROPOSED SOLUTION

In order to evaluate the five processing image algorithms in various platforms CPU, GPU, Raspberry, and FPGA
we implemented on our robot (contour detection, segmentation, erosion, dilate and distance calculation) which
allow the avoidance of dynamic obstacles in a specified area.

As shown in figure 1, the proposed system is divided into two parts:

 Hardware part: contains the electronic components used.

 Software part: Represents the used algorithms to perform all the tasks (information processing).

Figure 1. The architecture of the proposed solution.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 314

We have implemented an image processing algorithms (Calibration, Contour detection, Distance measurement)
integrated into a development platform, the latter communicates with a camera which makes it possible to capture
frames and send them as digital images, each image is processed using an algorithm. At the end, the processing
results obtained will be used to make a decision (check the motors) as illustrated in figure 2 the system overview is
presented in figure where:

d: the distance measured between the obstacle and the camera.

Threshold 1: specify for the initial state whose distance is very close to an object to avoid.

Threshold 2: the ideal distance to avoid the obstacle by the decision "turn right" or "turn left".

Figure 2. .The diagram of proposed system.

Several standard image processing algorithms have been used in our system; these have been modified so that
they are less complex. Among these algorithms is: Re-seize which will be the first processing to be applied in the
image in order to minimize the number of pixels to be processed.

A. The resizing algorithm

During the resizing process, keep in mind the original picture size, aspect ratio, and proportional relationship of
the image's width and height. If we ignore these last elements, our resizing will give unsatisfactory results. This
step (resizing) objective minimizes the computation time and the memory space of the processing platform.

B. Gaussian Blur

Gaussian Blur [12] Filtering is a treatment that applies globally to the entire image. For each pixel in the image,
the filter calculates its new value taking into account the pixel's vicinity. Therefore, we attach ourselves to filters
intended for improving the image (noising, smoothing, etc.).

A filter is therefore characterized by:

 The shape of the neighborhood (usually a square centered on the pixel).

 The size (or radius) of the neighborhood.

 The algorithm for calculating the final value.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 315

Blur filters [12] consist of modifying pixel value so that it approaches neighboring pixel values. Therefore, the
differences between neighboring pixels are reduced; noise, contours, and details are reduced, so the image is
"smoothed." The blur is usually due to a convolution of the original image by a kernel:

 x : image source.

 u(x) : pixel value (without filter).

 j(x) : kernel.

 w(x) : pixel value (with filter).

𝑤ሺ𝑢ሻ ൌ 𝑗𝑢 ൌ 𝑢𝑗 ൌ 𝑗ሺ𝑥 െ 𝑦ሻோ 𝑢ሺ𝑦ሻ𝑑𝑦. (1)

The advantage of a Gaussian filter is to minimize the loss of information while reducing overall noise.

C. RGB to HSV

The TSL or HSV [13] model (Hue Saturation Value) is a color management system representing color not by
its classic red, green and blue representation, such as for display on the screen, but defined by the hue saturation
and luminosity offering a more perceptual visualization of the color. The principle of this method is as follows:\\

for each pixel of the image, if its HSV value is not included between the lower and upper limit, then it becomes
0, otherwise we will not change.

D. Erode and Dilate

Dilation [14] is a basic morphological operation. It’s expanding the image pixels. The successive application of
erosion and dilation produces the elimination of details smaller than the structuring element without there being a
significant distortion of the characteristics that have been retained. By using gray scale images, dilation increases
the brightness of objects, and with binary images, it also connects the separated areas by space smaller than the
structuring element. Erosion [14] is the dual function of dilation; it's also one of the fundamental morphological
operations. It usually used for probing and reducing the shapes contained in the input image. It decreases the size
of the objects and removes the small anomalies.

E. Contour Detection

As described in [15], a contour is defined as an outline representing or bounding the shape or form of an object.
Contour detection attempts to extract curves which represent object shapes from images. In fact, the concept of
contour is based on human's common experience, which does not have a formal mathematical definition. Contour
is closely related to two additional concepts, i.e., edge [16] and boundary [17]. Another consideration is to introduce
prior shape information about the contours, so that so as to improve contours will be detected. This is important for
some usefully tasks such as tracking objects. The contour detection algorithm must be able to reject unwanted
information for the contours undesired and detect objects even in the presence of noise and occlusion. A related
approach is presented in [18], which aims to detect semantic contours. Moreover, the accuracy in this method is not
satisfactory, which presents a particularly attractive area [19].

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 316

F. Camera calibration

Camera calibration is one of the important problems in image processing algorithm because many applications need
the exact calculation of metric information from the input image. Calibrating a camera consists of determining the
transformation that projects the 3D points of a scene to their 2D image plane correspondences [20].This
transformation depends on two types of parameters: external parameters which define the pose of the camera and
the internal parameters that describe the internal geometry of the camera, that is, the process of building an image
through the optical system. We used Zhang's [20] method to calibrate the used camera in our application. The
calibration steps as detailed by Zhang is as follow:

 Print an example pattern and attach it to a planar surface.

 Read a set of images for calibration.

 Process the image for corner detection.

 Calculation of the internal and external matrix;

 Refine all parameters.

IV. IMPLEMENTATION AND RESULTS

The previous sections presented the adopted solution, the obstacle avoidance algorithm's design, and the used
methods. This section describes the implementation of the algorithms using the python language (version 3.8) and
the Open Source Computer Vision Library (OpenCV) in the following platforms:

 Raspberry Pi 3 B +.

 GPU

 FPGA

 CPU

The input video is the same in GPU, CPU, FPGA, and Raspberry Pi 3 B + captured from the camera used in
Raspberry to ensure that all the platforms use similar video frames.

Figure 3. Architecture of the solution.

OpenCV is a Library Officially launched in 1999. The OpenCV project was initially developed by Intel to
optimize applications consuming a lot of processor time. It was part of a series of projects, such as displaying a 3-
dimensional object [21]. This library is distributed under the BSD license. The main contributors to the project are
the library development team at Intel and several optimization experts. This library is written in C and C ++ and
can be used on Linux, Windows and Mac OS X. The OpenCV library provides many diversified functionality
allowing creating programs starting from raw data to go as far as the creation of basic graphical interfaces. It offers
most of the classic operations in low-level processing of images and videos [22].

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 317

A. Implementation in RASPBERRY and CPU

Officially released on February 29, 2012, the Raspberry Pi is developed by the Raspberry Pi Foundation. It’s a
computer that has the size of a credit card. The original purpose of the Raspberry Pi was to provide a low-cost tool
for encouraging programming. We use the Raspberry card to build a mobile robot field explorer, which will avoid
obstacles inside this field; in this way all the algorithms proposed in section 3 will be used so intensive.

Figure 4. Rasbery board and the mobile robot.

During the experiment we collect the statistics and after that we do the evaluation

In order to evaluate the performance of the proposed solution we have conducted many real world experiments
in a given area (figure 4). In all experiments we placed objects with different size at approximately. In the first
experiment the mobile robot covers an area of approximately 245cm * 160cm. The duration of each of the
experiments was approximately 4 minutes.

A mobile robot is a mechanical, electronic and computer system that acts physically on its environment in order
to achieve a goal that has been assigned to it. This machine is versatile and able to adapt to certain variations. It has
functions of perception, decision and action. Thus, the robot should be able to perform various tasks, in several
ways, and perform its task correctly, even if it encounters unexpected new situations. A robot is said to be
autonomous:

Our robot is composed with the following components:

 DC motor

 L298 shield

 Battery 12v for motors, 3, 7 for raspberry

 Camera

Those components are interconnected as indicated in the following figure.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 318

Figure 5. Logical connection of mobile robot.

After having carried out the calibration, we begin to calculate the distances separating the robot and the objects
encountered according to the algorithm presented previously, as illustrated in figure 6.

Figure 6. distance calculation.

After checking all parameters and before starting the experimentation we should calibrate our camera, according
to Zhang method.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 319

Figure 7. Frames during experimentations.

For this experiment, we fixed the distance over which the robot must avoid the obstacle at 25 Cm and the
evaluation time is set to 4 minutes, after observation (figure 8) may have said that the robot avoids all obstacles
until reaching 55 % of the engine speed, at this point we start to have collisions because the Raspberry CPU is
limited in a clock frequency as well as the size of the memory, to process the frames in real time.

Figure 8. Speed Vs Number of collisions.

After finalizing all parameters we compare and evaluate the fundamental functions (InRange, Gaussian Blur,
RGB to HSV and Contour detection) in the chosen platform (CPU and Raspberry), and after that we make a deep
comparison between them.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 320

Figure 9. CPU VS Raspberry.

All these steps are carried out in the same way in the CPU platform with the following technical characteristics:

 Intel(R) Core(TM) i5-4210 U CPU@1.70GHz 2.40 GHz

 (RAM):6 Go

 Windows 10.

According to Figure 9 (a, b), processing time using Raspberry pi 3 ranges from 0.009s to 0.013s for Gaussian
Blur and erode and dilate functions. Compared to CPU range from 0.0009s to 0.001s, CPU takes less time and has
higher stability. And regarding Figure 9 (c), CPU takes less time and has lower stability, this due to variety of pixel
nature in our frames, and also for the limited memory in Raspberry board.

B. Implementation on GPU

Graphics Processing Units (GPUs) are increasingly being adopted by real time vision application due to their
immense processing power [23]. In order to make the evaluations of the previous algorithms on GPU, we used
Opencv: 4.3.0, with the NVIDIA Quadro p5000 graphics card and CUDA Toolkit: 10.1.

CUDA is a higher level interface, provides a C-like syntax for achieving on the GPU and compiles offline.
CUDA exposes two levels of parallelism, data parallel and multi-threading[24]. The development environment
used is Microsoft Visual studio 2019 with C ++.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 321

Figure 10. GPU VS CPU VS Raspberry.

Graphs for “Time Vs. Frame input” is shown in figure 10, in which the lines with yellow, blue, and red colors
are used to specify the GPU, CPU, and raspberry, respectively. We can see a fluctuation and high variation in GPU
and raspberry graphs because of the underlying hardware. Up to a certain amount of memory, the processor can
fetch in one clock cycle. In Gaussian and erode operations, both the CPU and GPU are fighting for performance
for the most part; this is because the combination of throughput and latency of both devices are similar. In
conversion and re-seize operation, CPU performs better than GPU; this is because of these devices' architecture.
For intensive processing and manipulating data, the GPU significantly improves the execution time only on the
filter system (figure 10.a).

C. Implementation on FPGA

FPGA circuits (Field Programmable Gate Arrays) have changed designing and building systems in the form of
electronic circuits. One of the reasons for this upheaval is that the FPGA offers an exceptional compromise between
software and hardware. Vivado HLS software (high-level synthesis) is among the best-known software and tools
used for programmable logic design. It is also used to generate the IP core and could considerably reduce the
development cycle for FPGA cards. Utilizing Vivado HLS can shorten 1/3 of the RTL simulation time and increase
the algorithm verification speed by more than ten times [25]. Using Vivado HLS, users can use the reliably existing
software code, and they will not need advanced hardware knowledge or HDL programming experience.

Figure 11. FPGA Xilinc Architecture.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 322

In this experiment we will use the 2017.3 version of Vivado HLS, and as a card we will choose the zynq product
family whose target device is xc7z020clg484-1.

The implementation costs can be obtained in synthesis report, which is calculated by Vivado HLS. The results
were shown in Table I and II, contains the following elements:

 BRAM: the number of Block RAM

 FF: flip-flops

 DSP: digital signal processors

 LUT: look-up-tables

The resource utilization rate of FPGA was illustrated in the last row of table 2.

TABLE I. FPGA PERFORMANCE ESTIMATES

FPGA PERFORMANCE ESTIMATES

Clock Target Estimated (ns)

ap-clk 100.00 85.31

TABLE II. UTILIZATION ESTIMATES SUMMARY.

From the results in Table 1, the average time for processing all frames in Vivado HLS and CPU are 0.08531s
and 1.131157 seconds, respectively. It can be shown that using Vivado HLS to execute our system is 13.2 times
faster than the CPU.

V. SYNTHESIZES

This section discusses the results of the five algorithms chosen (Gaussian Blur, Erode, dilate, In-range, and
RGB to HSV) regarding time-performance. Using these results, we analyze the performance of our system. The
first important note that we noticed is that the GPU can compete and do the same performance as the CPU in the
Gaussian blur filter. The GPU is also slower than CPU in RGB to HSV algorithm because of the limitation of
memory access due to its architecture. So we can say that the nature of the data handled plays a decisive role in
determining these platforms performance.

From the results in Table 3 (designed from all the past experimentations), the total average time for processing
all frames in FPGA and CPU, GPU is 0.08531s, 1.131157, and 1.78509 seconds, respectively. It’s clear that using
FPGA in our system is 14 times faster than the CPU and GPU. The performance of FPGA is limited by memory
and bandwidth. Note that it is possible to double the performance by processing twice the number of pixels in
parallel.

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 323

TABLE III. EXECUTION TIME IN SECONDS FOR FPGA,RASPBERRY, CPU AND GPU.

VI. CONCLUSION

In this paper, we have compared the GPU performance (execution time) with CPU, FPGA, and raspberry Pi 3
using five standard algorithms in image processing. Many studies show that performance using GPU is better
compared to using CPU. To our current knowledge, this topic has not been previously investigated in the literature;
that compares the GPU performance with CPU, raspberry pi 3, and FPGA.

This result advocates GPU devices potential usage in innovative software due to their flexibility; it means that
the program can be changed easily during the development process. And on top of that, the nature of the data
handled and the algorithm used are decisive for performance. For example, uniform images with filter usage are
better in GPUs than CPUs. However, FPGA gives better results in massive pixel processing, with algorithms that
run in parallel.

We have the following issues which have to be considered. We have compared the performance using only five
problems. In our work, power consumption is not considered.

REFERENCES
[1] Marwa K. Elteir, Shaimaa Lazem, Mohamed Azab, ‘’ Unleashing the hidden powers of low-cost IoT boards: GPU-based edutainment

case study’’; Journal of King Saud University –Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.02.001
[2] B. Veenboer ∗, J.W. Romein, "Radio-astronomical imaging on graphics processors", Astronomy and Computing 32 (2020) 100386.

https://doi.org/10.1016/j.ascom.2020.100386
[3] Alfredo Cuzzocrea ∗, Enzo Mumolo, "A novel GPU-aware Histogram-based algorithm for supporting moving object segmentation in

big-data-based IoT application scenarios". Information Sciences 496 (2019) 592–612. https://doi.org/10.1016/j.ins.2019.03.029
[4] Sen Du, Tian Huang, Junjie Hou, Shijin Song, Yuefeng Song, “FPGA based acceleration of game theory algorithm in edge computing

for autonomous driving”. Journal of Systems Architecture 93 (2019) 33–39. https://doi.org/10.1016/j.sysarc.2018.12.009
[5] S. Esquembri⁎, J. Nieto, M. Ruiz, A. de Gracia, G. de Arcas. ‘’ Methodology for the implementation of real-time image processing

systems using FPGAs and GPUs and their integration in EPICS using Nominal Device Support’’. Fusion Engineering and Design 130
(2018) 26–31. doi.org/10.1016/j.fusengdes.2018.02.051

[6] Amir HajiRassouliha *, Andrew J. Taberner, Martyn P. Nash, Poul M.F. Nielsen, ‘’ Suitability of recent hardware accelerators (DSPs,
FPGAs, and GPUs) for computer vision and image processing algorithms ‘’. Signal Processing: Image Communication 68 (2018) 101–
119. doi.org/10.1016/j.image.2018.07.007

[7] Murad Qasaimeh, Joseph Zambreno and Phillip H. Jones, Kristof Denolf, Jack Lo and Kees Vissers, “Analyzing the Energy-Efficiency
of Vision Kernels on Embedded CPU, GPU and FPGA Platforms”, IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019. DOI 10.1109/FCCM.2019.00077

[8] Maxim Shepovalov, Venkatesh Akella, FPGA and GPU-based acceleration of ML workloads on Amazon cloud - A case study using
gradient boosted decision tree library, Integration, Volume 70, January 2020, Pages 1-9. doi.org/10.1016/j.vlsi.2019.09.007

[9] P. Liu, S. Li and Q. Ding, "An Energy-Efficient Accelerator Based on Hybrid CPU-FPGA Devices for Password Recovery," in IEEE
Transactions on Computers, vol. 68, no. 2, pp. 170-181, 1 Feb. 2019

[10] X. Tang and Z. Fu, "CPU–GPU Utilization Aware Energy-Efficient Scheduling Algorithm on Heterogeneous Computing Systems," in
IEEE Access, vol. 8, pp. 58948-58958, 2020, DOI: 10.1109/ACCESS.2020.2982956.

[11] Riza Satria Perdana, Benhard Sitohang, Andriyan B. Suksmono, A Survey of Graphics Processing Unit (GPU) Utilization. for Radar
Signal and Data Processing System, 6th International Conference on Electrical Engineering and Informatics (ICEEI), 2017

[12] Getreuer, Pascal (17 December 2013). "ASurvey of Gaussian Convolution Algorithms". Image Processing on Line. 3: 286–310.
doi:10.5201/ipol.2013.87

[13] Michael W. Schwarz; William B. Cowan; John C. Beatty (April 1987). "An experimental comparison of RGB, YIQ, LAB, HSV, and
opponent color models". ACM Transactions on Graphics. 6 (2): 123–158. doi:10.1145/31336.31338

[14] Dila tation et l’érosion[Digital Image Processing, 3rd Ed., chapter 9 ”Morphological Image processing”,Rafael C. Gonzalez and Richard
E. Woods, Prentice Hall, 2008]

[15] Y. S. Ming, H. D. Li, X. M. He. Contour completion without region segmentation. IEEE Transactions on Image Processing, vol.25, no.9,
pp.3597-3611, 2016. DOI:10.1109/TIP.2016.2564646

[16] D. Ziou, S. Tabbone. Edge detection techniques-an overview. Pattern Recognition \& Image Analysis, vol.8, no.4, pp.537-559, 1998.
[17] D. R. Martin, C. C. Fowlkes, J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.26, no.5, pp.530-549, 2004. DOI:10.1109/TPAMI.2004.1273918
[18] B. Hariharan, P. Arbelaez, L. Bourdev. Semantic contours from inverse detectors. In Proceedings of IEEE Conference on Computer

Vision, IEEE, Barcelona, Spain, pp. 991–998, 2011
[19] Xin-Yi Gong, Hu Su, De Xu, Zheng-Tao Zhang, Fei Shen, Hua-Bin Yang. An Overview of Contour Detection Approaches[J].

International Journal of Automation and Computing, 2018, 15(6): 656-672

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 324

[20] Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume:
22 , Issue: 11 , Nov 2000),Page(s): 1330 - 1334

[21] Adrian Kaehler; Gary Bradski (14 December 2016). Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O'Reilly
Media. pp. 26ff. ISBN 978-1-4919-3800-3.

[22] OpenCV C interface: http://docs.opencv.org
[23] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, "GPU Computing," in Proceedings of the IEEE, vol. 96,

no. 5, pp. 879-899, May 2008, doi: 10.1109/JPROC.2008.917757.
[24] Dumitrel Loghin, Lavanya Ramapantulu, Oana Barbu, Yong Meng Teo, A time–energy performance analysis of MapReduce on

heterogeneous systems with GPUs, Performance Evaluation, Volume 91, 2015, Pages 255-269, ISSN 0166-5316, https://doi.org
/10.1016/ j. peva.2015.06.015.

[25] Hui Gao, Houde Dai, Yadan Zeng, High-Speed Image Processing and Data Transmission Based on Vivado HLS and AXI4-Stream
Interface, Proceeding of the IEEE International Conference on Information and Automation Wuyi Mountain, China, August 2018

Tahar Abbes Mounir et al. / International Journal of Computer Science Engineering (IJCSE)

ISSN : 2319-7323 Vol. 9 No. 4 Jul-Aug 2020 325

	Performance Evaluation of Basic ImageProcessing Algorithms in CPU, GPU,Raspberry Pi and FPGA
	Abstract
	Keywords
	I. INTRODUCTION (HEADING 1)
	II. RELATED WORKS
	III. ARCHITECTURE OF THE PROPOSED SOLUTION
	IV. IMPLEMENTATION AND RESULTS
	V. SYNTHESIZES
	VI. CONCLUSION
	REFERENCES

