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Abstract—Purpose: Retinal image analysis and segmentation gives us information regarding different 
ocular and cardio-vascular diseases. Retinal image enhancement is the important pre-requisite of retinal 
image analysis and segmentation. In recent era, deep network has been extensively used in different 
research fields. In this paper, we attempt to exploit the application of deep convolution in retinal image 
enhancement and evaluate it against traditional enhancement techniques which are most prevalently used 
for retinal image enhancement. 

Method: We have utilized successive convolution and transposed convolution to enhance features of a 
retinal image. Feature maps are reconstructed from deep convolution layers and enhanced image is 
extracted successfully. We have evaluated the quality of the extracted enhanced image, with respect to 
three traditional enhancement techniques as well as different combinations of them. These traditional 
techniques are applications of contrast limited adaptive histogram equalization (CLAHE), adaptive 
gamma correction (AGC) and Tophat transformation. We evaluated all the methods on the basis of image 
quality assessment (IQA) metrics. Both statistical error based IQA metrics and visual information based 
IQA metrics are evaluated for this purpose. The metrics are peak signal to noise ratio (PSNR) and 
absolute mean brightness error (AMBE).  

Results: Deep convolution enhanced retinal images are reconstructed and extracted successfully and 
compared with other enhancement schemes. In most of the experiments deep convolution based 
enhancement performs the best among all schemes in terms of both types of IQA metrics.  

Conclusion: Deep convolution based enhancement can be used prior to retinal image segmentation and 
analysis instead of single or different arbitrary combinations of more than one single enhancement 
schemes for better precision in the relevant fields. 

Keywords - Deep convolution; Transposed convolution; Feature map; PSNR; AMBE; 

I. INTRODUCTION 

Retinal image segmentation leads to the analysis of symptomatic manifestations of different ocular and 
circulatory diseases such as hypertension, diabetes, cardio vascular diseases etc. which are visible at an early 
stage in retinal fundus images. Challenges present in automated retinal image segmentation are presence of noise, 
low contrast, uneven illumination, minute sizes of medically significant local artifacts such as micro aneurysms, 
hemorrhages etc. In the process of automated image segmentation and analysis, image enhancement plays a vital 
role. 

II. LITERATURE SURVEY 

Adaptive histogram equalization (AHE) is an image contrast enhancement method. But it is time consuming 
and it suffers from excessive enhancement of insignificant features. These two problems are addressed by Pizer et 
al. in [1]. To take care of these two problems K. Zuiderveld in [2] proposed Contrast Limited Adaptive Histogram 
Equalization (CLAHE). CLAHE based retinal image pre processing method has been used in [3]. [4] contributed 
considerably in the field of image enhancement with AGC. They presented a transformation technique to improve 
brightness of the image through gamma correction and probability distribution of luminance pixels. [5] discussed 
application of AGC for different types of image enhancement. An image contrast based adaptive gamma 
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correction is present in [6]. A morphological transformation based enhancement method for medical images has 
been presented in [7]. [8] used different morphological operators and clustering for vessel segmentation. An 
entropy based image quality metric is discussed in [9]. [10] presented a comparative study of different pre 
processing techniques to enhance mammograms. [11] presented a survey on different retinal vessel segmentation 
algorithms. [12] iteratively thresholded the residual retinal image to obtain higher vessel segmentation accuracy. 
[13], [14] and [15] exploited deep learning architecture to identify vessels from retinal fundus images. Deep 
feature representations of retinal images has been utilized for content based retrieval of diabetic retinopathy (DR) 
image using Siamese CNN by Chunget al. [22]. A review on deep learning based retinal image analysis has been 
presented by Maryam Badar in [23].  

[16] proposed U-net convolutional neural network model which is efficient in segmenting bio medical images. 
[26] is the application of U-Net on medical images. [27] presents a medical image enhancement application. 

The contribution of the work is reconstruction and extraction of enhanced version of retinal image from deep 
convolution pipeline and to compare it quantitatively with other traditional image enhancement policies with 
application to retinal image analysis and segmentation. For deep convolution enhancement, U-type convolution 
pipeline has been implemented. Deep convolution enhancement has been compared with some enhancement 
techniques frequently used with retinal image analysis like - contrast limited adaptive histogram equalization, 
adaptive gamma correction and tophat transformation and their different combinations. Proper algorithms are 
given for enhanced image reconstruction and extraction from deep convolution pipeline. Our work quantitatively 
concludes that in most of the evaluation experiments, deep convolution enhancement performs better than other 
methods 

III. DEEP CONVOLUTION IMAGE ENHANCEMENT 

Deep convolution based image enhancement takes place following three consecutive sub phases. They are deep 
convolution, feature map reconstruction and enhanced image extraction. The network architecture and the three 
sub phases are described as follows.  

A.  Network Architecture 

In our network, convolution layers have been implemented for image enhancement. We exploited U-type [16] 
convolution-deconvolution connections as it utilizes the same feature maps for contraction of the image to capture 
local artefacts of the image and for expansion of the vector to a reconstructed image by proper localization and 
placement of those artefacts. Thus semantic features are enhanced while structural integrity of image data is 
retained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Enhancement network block diagram 
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In this deep convolution network, consecutive convolution and maxpooling layers of filter size 2x2 form the 
unit of contraction pathway and level wise consecutive transposed convolution and up sampling layers form the 
unit of expansion pathway. For better reconstruction at every step of expansion, skip connections are 
implemented to concatenate convolution and transposed convolution output. We implemented connections with 
two levels in contraction pathway and two levels in expansion pathway. A drop out of 0.2 has been employed 
between two consecutive convolution layers. ReLU is used as activation function with each of the convolution 
and transposed convolution layers. The block diagram for the enhancement network is as in figure 1. 

B. Image Enhancement 

Deep convolution network has multiple convolution layers and each of the layers produces a weight matrix or 
tensor. Feature maps of higher convolution level are spatially coarser but semantically stronger. This feature map 
information can be used to represent enhanced image. We enhance image with multiple number of convolutions.  

The network is fed with a number of overlapping green channel image patches of size 48 x 48 and with a 
stride value of 20. If the image was fed to network as a whole it might be possible that minute local artefacts of 
retinal images remained unobserved in many cases. These green patches pass through convolution and transposed 
convolution layer following the network architecture as discussed in the previous subsection.  

C. Feature Map Reconstruction 

n number of overlapping patches of a fundus image with strides in height and width respectively are input to the 
model and model output size is m * patch_height * patch_width where m is number of filters. 

Overlapping image patches with stride values of 20 are considered for successful reconstruction of feature 
maps from patches without any grid line at the patch boundary. These patches pass through both contraction and 
expansion pathway. We extracted patch feature maps of shape 48x48 from the final layer of transposed 
convolution stack in the expansion pathway. The feature map reconstruction algorithm is as follows, 

Algorithm :FeatureMapReconstruction 

Input Data: 

1. Img_height    =      height of reconstructed map 
2. Img_width     =      width of reconstructed map 
3. Stride_height =      stride in height at which patches are extracted 
4. Stride_width  =      stride in width at which patches are extracted 
5. Patchset         =     3-D array of shape [n, patch_height, patch_width] 

Intermediate Data: 

1. FullSum2D[Img_height,Img_width], initialized with all zeros 
2. TemporaryConstructedMap[Img_height, Img_width], initialized with all zeros   

Output Data: 

1. FinalReconstructedMap 
begin 

Set Patch_height =   patch_height 

Set Patch_width =  patch_width 

Set N_patches_height =  ((Img_height – Patch_height) / stride_height) + 1 

Set N_patches_width =  ((Img_width – Patch_width) / stride_width) + 1 

Total_patches  = N_patches_height * N_patches_width 

k = 0 

        for h in1 to N_patches_height do 

for w in 1 to N_patches_width do 

from_height  =  h*stride_height,  

to_height  =  (h*stride_ height)+Patch_height 

from_width  = w*stride_width,  

to_width = (w*stride_width)+Patch_width 

TemporaryConstructedMap[from_height:to_height,from_width: to_width] + = 
Patchset[k] 

FullSum2D [from_height: to_height, from_width: to_width] + = 1 

k = k+1 

   end 
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         end 

FinalReconstructedMap = TemporaryConstructedMap /FullSum2D(element wise) 
Return FinalReconstructedMap 

end 

D. Enhanced Image Extraction 

We considered a pre defined number of maximum entropy patches to extract the enhanced image as per our 
experimental observations. High entropy feature maps at a particular level are merged together by element wise 
summation to produce a semantically stronger feature map which actually represents enhanced image in the 
convolution pipeline. The algorithm for enhanced image extraction from multiple feature maps is as follows, 

Algorithm: EnhancedImageExtraction  

Input Data: 

1. Img_height      =     height of reconstructed map 
2. Img_width       =     width of reconstructed map 
3. Stride_height   =     stride in height at which patches are extracted 
4. Stride_width    =     stride in width at which patches are extracted 
5. FeatureMaps   =     4-D array of shape [m, n, patch_height, patch_width] 

Intermediate Data: 

1. SingleChannelReconsctructed[Img_height,Img_width], initialized with all zeros 
2. FullSum2D[Img_height,Img_width], initialized with all zeros 

Output Data: 

1. EnhancedImage 

Functions used: 

1. Information_content(img): responsible for generating information content of an image “img” and 
returns its value as +1 if information content is more than required information threshold else return -1. 

begin 

Set Patch_height =   patch_height 

Set Patch_width =  patch_width 

k = 0 

for i in1 to m do 

SingleChannelReconsctructed = FeatureMapReconstruction(FeatureMaps[i], Img_height, 
Img_width, Stride_height, Stride_width) 

  If Information_content(SingleChannelReconstructed) >0: 

                         FullSum2D + = SingleChannelReconsctructed 

  end 

end 

EnhancedImage = FullSum2D 

Return EnhancedImage 

end 

IV. IMPLEMENTATION SPECIFICATION 

The system has been implemented using Intel Core i5-6500CPU @ 3.20 GHz, 6M Cache, upto 3.6 Ghz, 12 
GB DDR4 RAM and NVIDIA GeForce GTX 1660 SUPERGPU with1408 CUDA cores and 6GB of GDDR6 
memory. Software specification for the work is as follows, Python 3.8.6 with NVIDIA CUDA 10.1. Different 
required side loaded modules are Tensorflow 2.3.1, Keras 2.4.3 etc. 

V. ENHANCEMENT EVALUATION METRICS 

We used two different categories of image quality assessment (IQA) metrics to evaluate effective 
enhancement policy. They are statistical error based metrics and human visual perception based metrics. In 
reality, most reliable IQA metric is provided by human observer who is responsible for making use of that image 
data to draw some inference. But this is the subjective way of IQA. Human perception is better represented by 
Human visual perception based metric. However, we considered both of them to evaluate our enhancement 
schemes. Peak signal to noise ratio (PSNR) is most prevalently used statistical error based IQA metric whereas 
absolute mean brightness error (AMBE) is the commonly used visual perception based IQA metric. 
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A. Peak Signal To Noise Ratio – PSNR 

PSNR indicates the deviation of the enhanced image and the original image corresponding to the peak gray 
level value and is given by the equation 1. 

 

 

(1) 

MSE is mean squared error between the original image(I) and the enhanced image(En) and is given by equation 
2. 

 

 

(2) 

Higher value of PSNR indicates better information content of the enhanced image. 

B. Absolute Mean Brightness Error- AMBE 

AMBE is the absolute difference between expectations of enhanced and original images. 

 
 

(3) 

where E(En) and E(I) are expectations of original and enhanced images respectively. Lower the value of 
AMBE, lower is the contrast representation error of the enhanced image. 

VI. DATASET DESCRIPTION 

A. DRIVE  

For experimental evaluation, DRIVE [20] retinal image dataset is used as it is the most used dataset among 
researchers. Each image was preserved with 8 bits per color plane and at resolution of 565 by 584 pixels. Among 
forty photographs, 33 are healthy and 7 show symptoms of mild early DR.  

B. STARE 

STARE [24] dataset is composed of 20 color images of retina. The image size is 700 x 605 pixels; 8 bits per 
color channel and are available in Portable Pixmap (.ppm) format. We evaluated 8 pathology samples separately 
to infer that the evaluation decision is equally applicable to affected images with varied ailments also. 

C. Messidor 

1200 eye fundus color images in Messidor database [25]. Images were stored with 8 bits per color plane and 
with 1440*960, 2240*1488 or 2304*1536 pixels. Total 12 subsets contain 100 images in TIFF format each and 
an excel file with medical diagnoses for each image. Two diagnoses have been, one is DR grade and another is 
risk of macular edema (ME). 

VII. EXPERIMENTAL RESULTS 

During enhancement, green channel of retinal image is only considered [9]. 

A. Deep Convolution Based enhancement 

We considered image enhancement within deep convolution pipeline and evaluated image enhancement after 
10th convolution as discussed previously. The entire feature maps of a particular image from 10th convolution 
layer have been shown in figure 2. The single enhanced image obtained from10th convolution layer by merging 
high entropy feature maps with element wise summation. This enhanced image and its histogram are shown in 
figure 3. 

B. Traditional Enhancement 

We considered three different traditional enhancement techniques which are used most frequently for retinal 
image enhancement by the researchers. These are applications of CLAHE, AGC and Tophat transformation. We 
tested not only with these three single enhancement procedures, but also different combinations of them as used 
in the relevant literatures (figure 4). These evaluation results are compared with deep convolution based 
enhancement evaluation results. 
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Figure 2.  32 feature maps at 10th deep convolution layer 

 

 

 

 

 

 

 

Figure 3.  Deep 10th convolution enhanced image and its stretched histogram 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Different combinations of traditional enhancement methods 

C. IQA Metric Based Enhancement Evaluation 

Table I and II respectively display average values of PSNR and AMBE calculated over all the images of 
DRIVE dataset [20] and STARE dataset [24]. It has been found from most of the observations that deep 
convolution enhancement is the efficient alternative as compared to different traditional schemes. 
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TABLE I.  AVERAGE PSNR VALUES FOR DRIVE AND STARE 

Enhancement Techniques Av. PSNR - DRIVE Av. PSNR – STARE 

CLAHE 21.3989 13.72 

AGC 9.1297 11.2704 

Tophat 4.2996 5.4768 

AGC-Tophat 5.1962 5.3723 

AGC-CLAHE 10.1491 12.3419 

Tophat-AGC 3.8204 4.8698 

Tophat-CLAHE 4.8734 6.5073 

CLAHE-Tophat 4.4936 5.8972 

CLAHE-AGC 8.0453 9.0230 

Tophat-CLAHE_AGC 4.3214 5.6954 

Deep Convolution 15.6705 14.1053 

TABLE II.  AVERAGE AMBE VALUES FOR DRIVE AND STARE 

Enhancement Techniques Av. PSNR - DRIVE Av. PSNR – STARE 

CLAHE 16.4864 45.3766 

AGC 76.3101 58.9972 

Tophat 135.8085 116.7737 

AGC-Tophat 123.3155 120.0581 

AGC-CLAHE 68.2909 54.0020 

Tophat-AGC 144.7504 126.7884 

Tophat-CLAHE 119.3541 94.4954 

CLAHE-Tophat 131.0733 107.7733 

CLAHE-AGC 90.2071 81.6047 

Tophat-CLAHE_AGC 139.7946 107.6374 

Deep Convolution 14.1673 22.2588 

D. Effectiveness of deep convolution enhancement for identifying abnormalities 

4 DRIVE test image samples, 10 Messidor Base 11 samples and 5 STARE images have been chosen for 
verifying the applicability of the general observation obtained in the previous sub section for affected images 
also. These chosen DRIVE samples are mild DR samples, Messidor samples are severely affected grade 3 DR 
along with grade 2 ME samples and STARE samples are having varied abnormality symptoms other than DR as 
available in the dataset information. Table III and IV show the average IQA performance measurements on those 
pathology samples separately to assess the effectiveness of deep convolution based image enhancement. 
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TABLE III.   AVERAGE PSNR VALUES FOR DIFFERENT DATASET PATHOLOGY SAMPLES 

Enhancement 
Techniques 

Av. PSNR – 
DRIVE (Mild DR) 

Av PSNR – 
Messidor (Severe 

DR & ME) 

Av. PSNR – STARE 
(Varied Abnormality 

Symptoms) 

CLAHE 24.3606 13.9827 14.7294 

AGC 9.9341 6.6335 11.6027 

Tophat 4.6716 2.6151 5.5359 

AGC-Tophat 5.5559 5.0871 5.4776 

AGC-CLAHE 11.1675 7.7958 12.9225 

Tophat-AGC 4.1596 2.1593 4.9547 

Tophat-CLAHE 5.2340 2.9332 6.5194 

CLAHE-Tophat 4.9289 2.8158 6.0095 

CLAHE-AGC 8.8479 5.6311 9.4742 

Tophat-CLAHE_AGC 4.6517 2.4579 5.7440 

Deep Convolution 14.8634 20.9529 13.2132 

TABLE IV.   AVERAGE AMBE VALUES FOR DIFFERENT DATASET PATHOLOGY SAMPLES 

Enhancement 
Techniques 

Av. AMBE – 
DRIVE (Mild DR) 

Av. AMBE – 
Messidor (Severe 

DR & ME) 

Av. AMBE – STARE 
(Varied Abnormality 

Symptoms) 

CLAHE 30.5249 32.0906 36.7220 

AGC 70.0331 90.2734 56.8877 

Tophat 127.0265 171.2960 113.1700 

AGC-Tophat 115.9515 112.9789 116.8927 

AGC-CLAHE 62.2053 78.6206 49.9511 

Tophat-AGC 136.4187 180.8022 122.7804 

Tophat-CLAHE 111.4148 162.1828 90.7236 

CLAHE-Tophat 121.2600 165.6620 102.4505 

CLAHE-AGC 83.8836 101.9464 75.9353 

Tophat_CLAHE_AGC 122.2841 171.9283 103.5098 

Deep Convolution 24.9537 8.3741 25.4895 

E. Graphical Observation of Enhancement Evaluation 

Average IQA metric values for DRIVE and STARE databases and the same for variably affected images from 
three different databases have been represented graphically from figure 5 to 8.  

VIII. DISCUSSION 

Different ailment symptoms are evident in retina at a very early phase. Image enhancement is the pre-requisite 
of image segmentation and analysis.  

We constructed an image enhancement deep convolution network following the concept of feature map 
reconstruction after a series of convolution feature enhancement steps. We considered reconstruction of feature 
maps and extraction of enhanced image from deep convolution pipe line. Detailed algorithms for both feature 
map reconstruction and enhanced image extraction from deep convolution pipeline are given in a separate 
subsection.  

To quantify enhancement quality both statistically and visually we considered PSNR and AMBE as the 
representatives of both types of IQA metrics respectively. Higher PSNR value and lower AMBE value indicate 
better quality of enhanced image. Considering both categories of IQA metrics enhancement performance 
achieved by different enhancement methods are as observed in table 3 and 4. Figures 5 and 6 provide proper 
visualization of average IQA performance on DRIVE and STARE dataset images respectively.  
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Effectiveness of deep convolution enhancement has been assessed particularly for abnormal retinal fundus images 
and the obtained results have been discussed in a separate sub section. For abnormal image evaluation mild DR 
samples from DRIVE test set, severe DR and severe ME samples from Messidor base 11 dataset and a wide 
variety of abnormal (other than DR) images from STARE dataset have been selected. Table 5 and 6 represent 
average values of different IQA performance metrics computed on abnormal DRIVE, STARE and Messidor 
dataset images respectively. The graphical visualization of the same has been available in figures 7 and 8. 

Thus, considering overall performances over both types of IQA evaluation, it may be stated that deep 
convolution enhancement performance is good enough for image enhancement when applied to varied datasets. 
But one thing is noticeable in our observations that CLAHE enhanced DRIVE samples show high value of 
average PSNR for whole dataset evaluation as well as abnormal test images evaluation. This is the observational 
exception applicable to a particular dataset only. Though other two concerned dataset results help us to conclude 
steadily that deep convolution enhancement is the best option among the different alternatives. Sometimes 

Figure 5.  Average AMBE values of DRIVE and STARE for 
different enhancement schemes  

 

Figure 6.  Average PSNR values of DRIVE and STARE for 
different enhancement schemes  

 

Figure 7.  Average AMBE evaluation for varied ailment symptoms 
using DRIVE, STARE and Messidor Base 11 pathology samples 

Figure 8.  Average PSNR evaluation for varied ailment symptoms 
using DRIVE, STARE and Messidor Base 11 pathology samples 
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statistical error based metrics may not represent visual perception properly. Hence, we may rely more on visual 
perception based metrics while drawing inference about better image enhancement. According to AMBE, deep 
convolution enhancement is the most effective one considering diverse datasets with diverse disease symptoms.  

To ascertain our observational discussion, we represent some deep convolution enhanced abnormal images 
from DRIVE dataset with mild DR symptoms in figure 9 for better visual perception of effective image 
enhancement. The observational exceptions regarding average PSNR values of DRIVE images may be due to the 
existence of minute mild DR symptoms which are missed out during enhancement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Visual perception of DRIVE mild DR samples using deep convolution and CLAHE  

IX. CONCLUSION 

In this paper, we utilized deep convolution network for retinal image enhancement. We reconstructed feature 
maps and extracted enhanced images from deep convolution pipeline.  

We evaluated these output images with other traditional enhancement technique outputs. On the basis of our 
majority observations, it is quantitatively evaluated that deep convolution enhancement performs best among all 
of them while applied for retinal image segmentation and analysis.  

REFERENCES 
[1] Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T., terHaarRomeny, B., Zimmerman, J., and Zuiderveld, K.  

Adaptive histogram equalization and its variations. Computer Vision, Graphics and Image Processing, 39, pp. 355-368, 1987. 
[2] Zuiderveld, K. Contrast limited adaptive histogram equalization. Chapter VIII.5, Graphics Gems, IV, pp. 474-485, 1994. 
[3] Nandy Pal, M. and Banerjee, M., A Comparative Analysis of Application of Niblack and Sauvola Binarization to Retinal Vessel 

Segmentation. In proc. CINE 2017, IEEE Xplore. 
[4] Huang, S., Cheng, F., and Chiu, Y. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE 

Transaction on Image Processing, 22, 2013. 
[5] Rahman, S., Rahman, M., Abdullah-Al-Wadud, M., Al-Quaderi, G., and Shoyaib, M. An adaptive gamma correction for image 

enhancement. EurasipJounal on Image and Video Processing, 35. 2016. 
[6] Nandy, M. and Banerjee, M. Automatic diagnosis of micro aneurysm manifested retinal images by deep learning method. In 

Proceedings,  ICETST 2019. 
[7] Hassanpour, H., Samadiani, N., and Mahdi Salehi S.M. Using morphological transforms to enhance the contrast of medical images. 

The Egyptian Journal of Radiology and Nuclear Medicine, 46, pp. 481-489, 2015. 

ISSN : 2319-7323 Mahua Nandy Pal et al. / International Journal of Computer Science Engineering (IJCSE)

DOI : 10.21817/ijcsenet/2020/v9i6/200906007 Vol. 9 No. 6 Nov-Dec 2020 384



[8] Hassan, G., El-Bendary, N., Hassanien, A., Fahmy, A., Shoeb, A., and Snasel, V. Retinal blood vessel segmentation approach based on 
mathematical morphology. Procedia Computer Science, 65, 612-622, 2015. 

[9] Nandy, M. and Banerjee, M. Retinal vessel segmentation using gabor filter and artificial neural network. In Proceedings, IEEE 
International Conference on Emerging Applications of InformationTechnology - EAIT 2012, pp. 157-160, 2012. 

[10] Sheba, K. and Gladston, R. Objective quality assessment of image enhancement methods in digital mammography-a comparative 
study. Signal and Image Processing : An International Journal, 7, 2016. 

[11] Almotiri, J., Elleithy, K., and Elleithy, A. Retinal vessels segmentation techniques and algorithms: A survey. Applied Sciences, 8, 
2018. 

[12] Roychowdhury, S., Koozekanani, D., and Parhi, K. K. Iterative vessel segmentation of fundus images. IEEE Transactions on 
Biomedical Engineering, 62, pp. 1738-1749, 2015. 

[13] Fu, H., Xu, Y., Lin, S., Wong, D., and Liu, J. Deep vessel: Retinal vessel segmentation via deep learning and conditional random field. 
In proceedings, Medical Image Computing and Computer Assisted Intervention MICCAI 2016, pp. 132-139. 2016. 

[14] Liskowski, P. and Krawiec, K. (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical 
Imaging, 35, pp. 2369- 2380, 2016. 

[15] Mo, J. and Zhang, L., Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer 
Assisted Radiology and Surgery, 12, 21812193, December, 2017. 

[16] Ronneberger, O., Fischer, P., and Brox, T. U-net:convolutional networks for biomedical image segmentation. arXiv:1505.04597v1 
[cs.CV] 18 May 2015. 

[17] Cai, J., Gu, S., and Zhang, L. Learning a deep single image contrast enhancer from multi-exposer images. IEEE Transactions on Image 
Processing, 27, pp. 2049-2062, 2018. 

[18] Singh, S. and Bovis, K.., An evaluation of contrast enhancement techniques for mammographic breast masses. Chapter VIII.5, 
Graphics Gems IV., 9, pp. 109-119, 2005. 

[19] Staal, J., Abrano_, A., Niemeijer, M., Viergever, M., and Ginneken, B., Ridge based vessel segmentation in color images of the retina. 
IEEE Transactions on Medical Imaging, 23, pp. 501-509, 2004. 

[20] Digital retinal image for vessel extraction (DRIVE). Image Sciences Institute, Link: http://www.isi.uu.nl/Research/Databases/DRIVE/, 
online accessed on 25/06/2020. 

[21] Gonzalez, R. C. and Woods, R. E. Digital Image Processing. 3rd Edition, Pearson. 
[22] Yu An Chung, Wei Hung Weng, “Learning Deep Representations of Medical Images using Siamese CNNs with Application to 

Content based Image Retrieval”, In Proc. 31st Conf, on Neural Information Processing Systems, NIPS 2017, USA, Dec. 2017.   
[23] MayamBadar, Muhammad Haris, Anam Fatima, “Application of Deep Learning for Retinal Image Analysis: A Review”, Computer 

Science Review, Elsevier, 35, 100203, 2020. 
[24] Structured Analysis of the Retina (STARE). Clemson University, https://cecas.clemson.edu/~ahoover/stare/, online, accessed 1-July-

2018. 
[25] MESSIDOR Dataset, A consortium of Universities and Laboratories, Link: http://www.adcis.net/en/third-party/messidor/, online 

accessed on 25/06/2020. 
[26] Oskal, K. R., Risdal, M., Janssen, E. A., Undersrud, E. S., & Gulsrud, T. O., A U-net based approach to epidermal tissue segmentation 

in whole slide histopathological images. SN Applied Sciences, 1(7), 672. 2019. 
[27] Reddy, G. B., & Kumar, H. P., Enhancement of mammogram images by using entropy improvement approach. SN Applied Sciences, 

1(12), 1688, 2019. 

ISSN : 2319-7323 Mahua Nandy Pal et al. / International Journal of Computer Science Engineering (IJCSE)

DOI : 10.21817/ijcsenet/2020/v9i6/200906007 Vol. 9 No. 6 Nov-Dec 2020 385


	Feature Enhancement of Retinal Images inDeep Convolution Pipeline, ItsReconstruction, Extraction and AnalyticalEvaluation
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE SURVEY
	III. DEEP CONVOLUTION IMAGE ENHANCEMENT
	IV. IMPLEMENTATION SPECIFICATION
	V. ENHANCEMENT EVALUATION METRICS
	VI. DATASET DESCRIPTION
	VII. EXPERIMENTAL RESULTS
	VIII. DISCUSSION
	IX. CONCLUSION
	REFERENCES




